Stephen L DeAngelo,Liang Zhao,Sofia Dziechciarz,Myungsun Shin,Sumeet Solanki,Andrii Balia,Marwa O El-Derany,Cristina Castillo,Yao Qin,Nupur K Das,Hannah N Bell,Joao A Paulo,Yuezhong Zhang,Nicholas J Rossiter,Elizabeth C McCulla,Jianping He,Indrani Talukder,Billy Wai-Lung Ng,Zachary T Schafer,Nouri Neamati,Joseph D Mancias,Markos Koutmos,Yatrik M Shah
{"title":"Recharacterization of the Tumor Suppressive Mechanism of RSL3 Identifies the Selenoproteome as a Druggable Pathway in Colorectal Cancer.","authors":"Stephen L DeAngelo,Liang Zhao,Sofia Dziechciarz,Myungsun Shin,Sumeet Solanki,Andrii Balia,Marwa O El-Derany,Cristina Castillo,Yao Qin,Nupur K Das,Hannah N Bell,Joao A Paulo,Yuezhong Zhang,Nicholas J Rossiter,Elizabeth C McCulla,Jianping He,Indrani Talukder,Billy Wai-Lung Ng,Zachary T Schafer,Nouri Neamati,Joseph D Mancias,Markos Koutmos,Yatrik M Shah","doi":"10.1158/0008-5472.can-24-3478","DOIUrl":null,"url":null,"abstract":"Ferroptosis is a non-apoptotic form of cell death driven by iron-dependent lipid peroxide accumulation. Colorectal cancer (CRC) cells feature elevated intracellular iron and reactive oxygen species (ROS) that heighten ferroptosis sensitivity. The ferroptosis inducer (S)-RSL3 ([1S,3R]-RSL3) is widely described as a selective inhibitor of the selenocysteine-containing enzyme (selenoprotein) glutathione peroxidase 4 (GPX4), which detoxifies lipid peroxides utilizing glutathione. However, through chemical controls utilizing the (R) stereoisomer of RSL3 ([1R,3R]-RSL3) that does not bind GPX4, combined with inducible genetic knockdowns of GPX4 in CRC cell lines, we revealed here that GPX4 dependency does not always align with (S)-RSL3 sensitivity, questioning the current characterization of GPX4 as the primary target of (S)-RSL3. Affinity pull-down mass spectrometry with modified (S)-RSL3 probes identified multiple selenoprotein targets, indicating broad selenoprotein inhibition. Further investigation of the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC showed that the selenoprotein inhibitor auranofin, an FDA-approved gold-salt, chemically induced oxidative cell death and ferroptosis in CRC models in vitro and in vivo. Similarly, genetic perturbation of ALKBH8, a tRNA-selenocysteine methyltransferase required for selenoprotein translation, suppressed CRC growth. In summary, these findings recharacterize the mechanism of (S)-RSL3 beyond GPX4 inhibition and establish selenoproteome disruption as a CRC therapeutic strategy.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"131 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-3478","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is a non-apoptotic form of cell death driven by iron-dependent lipid peroxide accumulation. Colorectal cancer (CRC) cells feature elevated intracellular iron and reactive oxygen species (ROS) that heighten ferroptosis sensitivity. The ferroptosis inducer (S)-RSL3 ([1S,3R]-RSL3) is widely described as a selective inhibitor of the selenocysteine-containing enzyme (selenoprotein) glutathione peroxidase 4 (GPX4), which detoxifies lipid peroxides utilizing glutathione. However, through chemical controls utilizing the (R) stereoisomer of RSL3 ([1R,3R]-RSL3) that does not bind GPX4, combined with inducible genetic knockdowns of GPX4 in CRC cell lines, we revealed here that GPX4 dependency does not always align with (S)-RSL3 sensitivity, questioning the current characterization of GPX4 as the primary target of (S)-RSL3. Affinity pull-down mass spectrometry with modified (S)-RSL3 probes identified multiple selenoprotein targets, indicating broad selenoprotein inhibition. Further investigation of the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC showed that the selenoprotein inhibitor auranofin, an FDA-approved gold-salt, chemically induced oxidative cell death and ferroptosis in CRC models in vitro and in vivo. Similarly, genetic perturbation of ALKBH8, a tRNA-selenocysteine methyltransferase required for selenoprotein translation, suppressed CRC growth. In summary, these findings recharacterize the mechanism of (S)-RSL3 beyond GPX4 inhibition and establish selenoproteome disruption as a CRC therapeutic strategy.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.