Utilizing Provenance as an Attribute for Visual Data Analysis: A Design Probe with ProvenanceLens.

Arpit Narechania, Shunan Guo, Eunyee Koh, Alex Endert, Jane Hoffswell
{"title":"Utilizing Provenance as an Attribute for Visual Data Analysis: A Design Probe with ProvenanceLens.","authors":"Arpit Narechania, Shunan Guo, Eunyee Koh, Alex Endert, Jane Hoffswell","doi":"10.1109/TVCG.2025.3571708","DOIUrl":null,"url":null,"abstract":"<p><p>Analytic provenance can be visually encoded to help users track their ongoing analysis trajectories, recall past interactions, and inform new analytic directions. Despite its significance, provenance is often hardwired into analytics systems, affording limited user control and opportunities for self-reflection. We thus propose modeling provenance as an attribute that is available to users during analysis. We demonstrate this concept by modeling two provenance attributes that track the recency and frequency of user interactions with data. We integrate these attributes into a visual data analysis system prototype, ProvenanceLens, wherein users can visualize their interaction recency and frequency by mapping them to encoding channels (e.g., color, size) or applying data transformations (e.g., filter, sort). Using ProvenanceLens as a design probe, we conduct an exploratory study with sixteen users to investigate how these provenance-tracking affordances are utilized for both decision-making and self-reflection. We find that users can accurately and confidently answer questions about their analysis, and we show that mismatches between the user's mental model and the provenance encodings can be surprising, thereby prompting useful self-reflection. We also report on the user strategies surrounding these affordances, and reflect on their intuitiveness and effectiveness in representing provenance.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3571708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analytic provenance can be visually encoded to help users track their ongoing analysis trajectories, recall past interactions, and inform new analytic directions. Despite its significance, provenance is often hardwired into analytics systems, affording limited user control and opportunities for self-reflection. We thus propose modeling provenance as an attribute that is available to users during analysis. We demonstrate this concept by modeling two provenance attributes that track the recency and frequency of user interactions with data. We integrate these attributes into a visual data analysis system prototype, ProvenanceLens, wherein users can visualize their interaction recency and frequency by mapping them to encoding channels (e.g., color, size) or applying data transformations (e.g., filter, sort). Using ProvenanceLens as a design probe, we conduct an exploratory study with sixteen users to investigate how these provenance-tracking affordances are utilized for both decision-making and self-reflection. We find that users can accurately and confidently answer questions about their analysis, and we show that mismatches between the user's mental model and the provenance encodings can be surprising, thereby prompting useful self-reflection. We also report on the user strategies surrounding these affordances, and reflect on their intuitiveness and effectiveness in representing provenance.

利用来源作为视觉数据分析的属性:一个具有来源属性的设计探索。
分析来源可以可视化地编码,以帮助用户跟踪他们正在进行的分析轨迹,回忆过去的交互,并通知新的分析方向。尽管它很重要,但来源通常是硬连接到分析系统中,提供有限的用户控制和自我反思的机会。因此,我们建议将出处建模为用户在分析期间可用的属性。我们通过对两个溯源属性进行建模来演示这一概念,溯源属性跟踪用户与数据交互的近时性和频率。我们将这些属性集成到一个可视化数据分析系统原型ProvenanceLens中,其中用户可以通过将它们映射到编码通道(例如,颜色,大小)或应用数据转换(例如,过滤,排序)来可视化他们的交互频率和频率。使用ProvenanceLens作为设计探针,我们对16个用户进行了探索性研究,以调查如何将这些来源跟踪功能用于决策和自我反思。我们发现,用户可以准确而自信地回答有关他们的分析的问题,我们表明,用户的心理模型和来源编码之间的不匹配可能是令人惊讶的,从而促使有用的自我反思。我们还报告了围绕这些启示的用户策略,并反映了它们在表示来源方面的直观性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信