Yinying Ren, Mi Zhou, Yuehan Li, Yan Li, JinYing Xiang, Fang Deng, Zhengxiu Luo, Enmei Liu, Jinyue Yu, Zhou Fu, Fengxia Ding, Bo Liu
{"title":"Exosomes derived from M2 macrophages regulate airway inflammation by modulating epithelial cell proliferation and apoptosis.","authors":"Yinying Ren, Mi Zhou, Yuehan Li, Yan Li, JinYing Xiang, Fang Deng, Zhengxiu Luo, Enmei Liu, Jinyue Yu, Zhou Fu, Fengxia Ding, Bo Liu","doi":"10.1186/s12950-025-00444-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Asthma is a chronic inflammatory disease characterized by airway remodeling and immune dysregulation. This study aimed to explore the mechanisms by which M2 macrophage-derived exosomes (M2Φ-Exos) regulate airway inflammation in asthma by modulating epithelial cell proliferation and apoptosis.</p><p><strong>Methods: </strong>M2Φ-Exos were extracted and characterized by morphology, size, and marker protein expression. In vitro, the effects of M2Φ-Exos on House Dust Mites (HDM)-stimulated mouse lung epithelial cells (MLE-12s) were evaluated using western blotting to analyze Proliferating Cell Nuclear Antigen (PCNA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved caspase-3 expression. In vivo, M2Φ-Exos were administered to HDM-induced asthmatic mice to assess their impact on airway inflammation, epithelial remodeling, and proliferation-apoptosis balance using immunohistochemistry, immunofluorescence, and western blotting. Cytokine levels in lung tissue and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA.</p><p><strong>Results: </strong>M2Φ-Exos displayed typical cup-shaped morphology, an average diameter of 115.5 nm, and expressed marker proteins CD9, TSG101, and CD63. MLE-12 cells internalized M2Φ-Exos, leading to reduced abnormal proliferation and apoptosis in HDM-stimulated cells. In asthmatic mice, M2Φ-Exos alleviated airway inflammation and epithelial thickening while reducing PCNA, cleaved caspase-3, and Bax levels and increasing Bcl-2 expression. M2Φ-Exos suppressed pro-inflammatory cytokines (IL-4, IL-5, IL-13) and Transforming growth factor (TGF)-β, while enhancing anti-inflammatory cytokine IFN-γ and IL-10.</p><p><strong>Conclusion: </strong>These findings demonstrate that M2Φ-Exos regulate the imbalance in epithelial proliferation and apoptosis in asthma, reducing inflammation and mitigating tissue remodeling, and provide new insights into potential therapeutic strategies for asthma management.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":"22 1","pages":"19"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-025-00444-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Asthma is a chronic inflammatory disease characterized by airway remodeling and immune dysregulation. This study aimed to explore the mechanisms by which M2 macrophage-derived exosomes (M2Φ-Exos) regulate airway inflammation in asthma by modulating epithelial cell proliferation and apoptosis.
Methods: M2Φ-Exos were extracted and characterized by morphology, size, and marker protein expression. In vitro, the effects of M2Φ-Exos on House Dust Mites (HDM)-stimulated mouse lung epithelial cells (MLE-12s) were evaluated using western blotting to analyze Proliferating Cell Nuclear Antigen (PCNA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved caspase-3 expression. In vivo, M2Φ-Exos were administered to HDM-induced asthmatic mice to assess their impact on airway inflammation, epithelial remodeling, and proliferation-apoptosis balance using immunohistochemistry, immunofluorescence, and western blotting. Cytokine levels in lung tissue and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA.
Results: M2Φ-Exos displayed typical cup-shaped morphology, an average diameter of 115.5 nm, and expressed marker proteins CD9, TSG101, and CD63. MLE-12 cells internalized M2Φ-Exos, leading to reduced abnormal proliferation and apoptosis in HDM-stimulated cells. In asthmatic mice, M2Φ-Exos alleviated airway inflammation and epithelial thickening while reducing PCNA, cleaved caspase-3, and Bax levels and increasing Bcl-2 expression. M2Φ-Exos suppressed pro-inflammatory cytokines (IL-4, IL-5, IL-13) and Transforming growth factor (TGF)-β, while enhancing anti-inflammatory cytokine IFN-γ and IL-10.
Conclusion: These findings demonstrate that M2Φ-Exos regulate the imbalance in epithelial proliferation and apoptosis in asthma, reducing inflammation and mitigating tissue remodeling, and provide new insights into potential therapeutic strategies for asthma management.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.