Min Seok Song, Hun Ju Sim, Shin Hye Noh, Vivek Malhotra, Min Goo Lee
{"title":"ER tubular body: an ER-derived compartment for redirecting autophagy to secretory functions.","authors":"Min Seok Song, Hun Ju Sim, Shin Hye Noh, Vivek Malhotra, Min Goo Lee","doi":"10.1080/15548627.2025.2508935","DOIUrl":null,"url":null,"abstract":"<p><p>The secretion of proteins that do not follow the well-characterized endoplasmic reticulum (ER)-Golgi apparatus pathway, known as unconventional protein secretion (UCPS), is gradually revealing its complexities. Our study has identified an ER-based tubulovesicular network, termed ER tubular body (ER-TB), as a central compartment in this process. We demonstrate that ER-TBs are formed by two reticulophagy receptors, ATL3 and RTN3L, under conditions of cellular stress. In addition to their role in stress-induced secretion, the activation of UCPS via ER-TBs facilitates cell surface trafficking of trafficking-deficient transmembrane proteins such as ΔF508-CFTR. Furthermore, their involvement in ER remodeling and vesicle trafficking suggests a potential role in viral replication, particularly in the formation of membrane compartments utilized by positive-strand RNA viruses. By uncovering ER-TBs as key cellular structures in stress-induced UCPS and demonstrating their regulation by autophagy-related factors, our findings offer valuable insights into protein homeostasis, viral pathogenesis, and potential therapeutic strategies for diseases linked to trafficking defects.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2082-2084"},"PeriodicalIF":14.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2508935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The secretion of proteins that do not follow the well-characterized endoplasmic reticulum (ER)-Golgi apparatus pathway, known as unconventional protein secretion (UCPS), is gradually revealing its complexities. Our study has identified an ER-based tubulovesicular network, termed ER tubular body (ER-TB), as a central compartment in this process. We demonstrate that ER-TBs are formed by two reticulophagy receptors, ATL3 and RTN3L, under conditions of cellular stress. In addition to their role in stress-induced secretion, the activation of UCPS via ER-TBs facilitates cell surface trafficking of trafficking-deficient transmembrane proteins such as ΔF508-CFTR. Furthermore, their involvement in ER remodeling and vesicle trafficking suggests a potential role in viral replication, particularly in the formation of membrane compartments utilized by positive-strand RNA viruses. By uncovering ER-TBs as key cellular structures in stress-induced UCPS and demonstrating their regulation by autophagy-related factors, our findings offer valuable insights into protein homeostasis, viral pathogenesis, and potential therapeutic strategies for diseases linked to trafficking defects.