Ocelli: an open-source tool for the analysis and visualization of developmental multimodal single-cell data.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-04-10 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf040
Piotr Rutkowski, Marcin Tabaka
{"title":"Ocelli: an open-source tool for the analysis and visualization of developmental multimodal single-cell data.","authors":"Piotr Rutkowski, Marcin Tabaka","doi":"10.1093/nargab/lqaf040","DOIUrl":null,"url":null,"abstract":"<p><p>The recent expansion of single-cell technologies has enabled simultaneous genome-wide measurements of multiple modalities in the same single cell. The potential to jointly profile such modalities as gene expression, chromatin accessibility, protein epitopes, or multiple histone modifications at single-cell resolution represents a compelling opportunity to study developmental processes at multiple layers of gene regulation. Here, we present Ocelli, a lightweight Python package implemented in Ray for scalable visualization and analysis of developmental multimodal single-cell data. The core functionality of Ocelli focuses on diffusion-based modeling of biological processes involving cell state transitions. Ocelli addresses common tasks in single-cell data analysis, such as visualization of cells on a low-dimensional embedding that preserves the continuity of the developmental progression of cells, identification of rare and transient cell states, integration with trajectory inference algorithms, and imputation of undetected feature counts. Extensive benchmarking shows that Ocelli outperforms existing methods regarding computational time and quality of the reconstructed low-dimensional representation of developmental data.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf040"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent expansion of single-cell technologies has enabled simultaneous genome-wide measurements of multiple modalities in the same single cell. The potential to jointly profile such modalities as gene expression, chromatin accessibility, protein epitopes, or multiple histone modifications at single-cell resolution represents a compelling opportunity to study developmental processes at multiple layers of gene regulation. Here, we present Ocelli, a lightweight Python package implemented in Ray for scalable visualization and analysis of developmental multimodal single-cell data. The core functionality of Ocelli focuses on diffusion-based modeling of biological processes involving cell state transitions. Ocelli addresses common tasks in single-cell data analysis, such as visualization of cells on a low-dimensional embedding that preserves the continuity of the developmental progression of cells, identification of rare and transient cell states, integration with trajectory inference algorithms, and imputation of undetected feature counts. Extensive benchmarking shows that Ocelli outperforms existing methods regarding computational time and quality of the reconstructed low-dimensional representation of developmental data.

Ocelli:一个开源工具,用于分析和可视化发展中的多模态单细胞数据。
最近单细胞技术的扩展使得在同一个单细胞中同时进行多种模式的全基因组测量成为可能。在单细胞分辨率下联合分析基因表达、染色质可及性、蛋白质表位或多组蛋白修饰等模式的潜力,为研究基因调控的多层发育过程提供了一个引人注目的机会。在这里,我们介绍Ocelli,一个轻量级的Python包,在Ray中实现,用于可扩展的可视化和分析发展中的多模态单细胞数据。Ocelli的核心功能侧重于涉及细胞状态转换的生物过程的基于扩散的建模。Ocelli解决了单细胞数据分析中的常见任务,例如在低维嵌入上的细胞可视化,以保持细胞发育过程的连续性,识别罕见和瞬态细胞状态,与轨迹推断算法集成,以及未检测到的特征计数的输入。广泛的基准测试表明,Ocelli在计算时间和重建发展数据低维表示的质量方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信