Norio Shinkai, Ken Asada, Hidenori Machino, Ken Takasawa, Satoshi Takahashi, Nobuji Kouno, Masaaki Komatsu, Ryuji Hamamoto, Syuzo Kaneko
{"title":"SEgene identifies links between super enhancers and gene expression across cell types.","authors":"Norio Shinkai, Ken Asada, Hidenori Machino, Ken Takasawa, Satoshi Takahashi, Nobuji Kouno, Masaaki Komatsu, Ryuji Hamamoto, Syuzo Kaneko","doi":"10.1038/s41540-025-00533-x","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancers are non-coding DNA regions that facilitate gene transcription, with a specialized subset, super-enhancers, known to exert exceptionally strong transcriptional activation effects. Super-enhancers have been implicated in oncogenesis, and their identification is achievable through histone mark chromatin immunoprecipitation followed by sequencing data using existing analytical tools. However, conventional super-enhancer detection methodologies often do not accurately reflect actual gene expression levels, and the large volume of identified super-enhancers complicates comprehensive analysis. To address these limitations, we developed the super-enhancer to gene links (SE-to-gene Links) analysis, a platform named \"SEgene\" which incorporates the peak-to-gene links approach-a statistical method designed to reveal correlations between genes and peak regions ( https://github.com/hamamoto-lab/SEgene ). This platform enables a targeted evaluation of super-enhancer regions in relation to gene expression, facilitating the identification of super-enhancers that are functionally linked to transcriptional activity. Here, we demonstrate the application of SE-to-gene Links analysis to public datasets, confirming its efficacy in accurately detecting super-enhancers and identifying functionally associated genes. Additionally, SE-to-gene Links analysis identified ERBB2 as a significant gene of interest in the lung adenocarcinoma dataset from the National Cancer Center Japan cohort, suggesting a potential impact across multiple patient samples. Thus, the SE-to-gene Links analysis provides an analytical tool for evaluating super-enhancers as potential therapeutic targets, supporting the identification of clinically significant super-enhancer regions and their functionally associated genes.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"49"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00533-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancers are non-coding DNA regions that facilitate gene transcription, with a specialized subset, super-enhancers, known to exert exceptionally strong transcriptional activation effects. Super-enhancers have been implicated in oncogenesis, and their identification is achievable through histone mark chromatin immunoprecipitation followed by sequencing data using existing analytical tools. However, conventional super-enhancer detection methodologies often do not accurately reflect actual gene expression levels, and the large volume of identified super-enhancers complicates comprehensive analysis. To address these limitations, we developed the super-enhancer to gene links (SE-to-gene Links) analysis, a platform named "SEgene" which incorporates the peak-to-gene links approach-a statistical method designed to reveal correlations between genes and peak regions ( https://github.com/hamamoto-lab/SEgene ). This platform enables a targeted evaluation of super-enhancer regions in relation to gene expression, facilitating the identification of super-enhancers that are functionally linked to transcriptional activity. Here, we demonstrate the application of SE-to-gene Links analysis to public datasets, confirming its efficacy in accurately detecting super-enhancers and identifying functionally associated genes. Additionally, SE-to-gene Links analysis identified ERBB2 as a significant gene of interest in the lung adenocarcinoma dataset from the National Cancer Center Japan cohort, suggesting a potential impact across multiple patient samples. Thus, the SE-to-gene Links analysis provides an analytical tool for evaluating super-enhancers as potential therapeutic targets, supporting the identification of clinically significant super-enhancer regions and their functionally associated genes.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.