Yingjiang Zhou , EunJu Bae , Simon S. Hoffman , Da Young Oh , Gordon I. Smith , Samuel Klein , Saswata Talukdar
{"title":"Whole body and hematopoietic cell-specific deletion of G-protein coupled receptor 65 (GPR65) improves insulin sensitivity in diet-induced obese mice","authors":"Yingjiang Zhou , EunJu Bae , Simon S. Hoffman , Da Young Oh , Gordon I. Smith , Samuel Klein , Saswata Talukdar","doi":"10.1016/j.molmet.2025.102169","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Acidic extracellular microenvironments, resulting from enhanced glycolysis and lactic acid secretion by immune cells, along with metabolic acidosis may interfere with the insulin signaling pathway and contribute to the development of insulin resistance. In the present study, we investigated the role of G protein-coupled receptor GPR65, an extracellular pH sensing protein, in modulating insulin resistance.</div></div><div><h3>Methods</h3><div>We measured <em>GPR65</em> expression in the adipose tissue (AT) of subjects with varying metabolic health states. We utilized whole-body and hematopoietic cell-specific GPR65 knockout (KO) mice to investigate the mechanism underlying the associations between GPR65, inflammatory response, and insulin resistance.</div></div><div><h3>Results</h3><div>Elevated <em>GPR65</em> expression was observed in the AT of subjects with obesity, compared to their lean counterparts, and was inversely correlated with insulin resistance. In GPR65 KO mice, improved insulin sensitivity and decreased hepatic lipid content were observed, attributed to concomitant increases in mitochondrial activity and fatty acid β-oxidation in liver. GPR65 KO mice also exhibited increased Akt phosphorylation in skeletal muscle, suppressed proinflammatory gene expression in AT, and decreased serum cytokine levels, collectively suggesting the anti-inflammatory effects of GPR65 depletion. This was further confirmed by observations of decreased macrophage chemotaxis towards AT <em>in vitro</em>, and depressed inflammatory signaling pathway activation in bone marrow-derived dendritic cells from GPR65 KO mice. Additionally, hematopoietic lineage-specific GPR65 KO mice exhibited improved whole body insulin sensitivity in clamp studies, demonstrating GPR65 signaling in immune cells mediates this effect.</div></div><div><h3>Conclusions</h3><div>Our data suggests that macrophage-specific GPR65 signaling contributes to inflammation and the development of insulin resistance.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"97 ","pages":"Article 102169"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000766","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Acidic extracellular microenvironments, resulting from enhanced glycolysis and lactic acid secretion by immune cells, along with metabolic acidosis may interfere with the insulin signaling pathway and contribute to the development of insulin resistance. In the present study, we investigated the role of G protein-coupled receptor GPR65, an extracellular pH sensing protein, in modulating insulin resistance.
Methods
We measured GPR65 expression in the adipose tissue (AT) of subjects with varying metabolic health states. We utilized whole-body and hematopoietic cell-specific GPR65 knockout (KO) mice to investigate the mechanism underlying the associations between GPR65, inflammatory response, and insulin resistance.
Results
Elevated GPR65 expression was observed in the AT of subjects with obesity, compared to their lean counterparts, and was inversely correlated with insulin resistance. In GPR65 KO mice, improved insulin sensitivity and decreased hepatic lipid content were observed, attributed to concomitant increases in mitochondrial activity and fatty acid β-oxidation in liver. GPR65 KO mice also exhibited increased Akt phosphorylation in skeletal muscle, suppressed proinflammatory gene expression in AT, and decreased serum cytokine levels, collectively suggesting the anti-inflammatory effects of GPR65 depletion. This was further confirmed by observations of decreased macrophage chemotaxis towards AT in vitro, and depressed inflammatory signaling pathway activation in bone marrow-derived dendritic cells from GPR65 KO mice. Additionally, hematopoietic lineage-specific GPR65 KO mice exhibited improved whole body insulin sensitivity in clamp studies, demonstrating GPR65 signaling in immune cells mediates this effect.
Conclusions
Our data suggests that macrophage-specific GPR65 signaling contributes to inflammation and the development of insulin resistance.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.