{"title":"Overview of methods that determine mitochondrial function in human disease","authors":"Eashan Sharma , Leila Fotooh Abadi , John Arnaud Kombe Kombe , Monisha Kandala , Jordan Parker , Nolan Winicki , Theodoros Kelesidis","doi":"10.1016/j.metabol.2025.156300","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular metabolism has a key role in the pathogenesis of human disease. Mitochondria are the organelles that generate most of the energy needed for a cell to function and drive cellular metabolism. Understanding the link between metabolic and mitochondrial function can be challenging due to the variation in methods used to measure mitochondrial function and heterogeneity in mitochondria, cells, tissues, and end organs. Mitochondrial dysfunction can be determined at both the cellular and tissue levels using several methods, such as assessment of cellular bioenergetics, levels of mitochondrial DNA (mtDNA), mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mito-ROS), and levels of mitochondrial enzymes. Recent advances involving novel radiotracers in combination with PET imaging have allowed for the determination of mitochondrial function in vivo with high specificity. Understanding the barriers in existing methodologies used to study mitochondrial function may help further establish the assessment of mitochondrial function as a biologically and clinically relevant biomarker for human disease severity and prognosis. Herein, we critically review the existing literature regarding the strengths and limitations of methods that determine mitochondrial function, and we subsequently discuss how emerging research methods have begun to overcome some of these hurdles. We conclude that a combination of techniques, including respirometry and mitochondrial membrane potential assessment, is necessary to understand the complexity and biological and clinical relevance of mitochondrial function in human disease.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"170 ","pages":"Article 156300"},"PeriodicalIF":10.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525001696","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular metabolism has a key role in the pathogenesis of human disease. Mitochondria are the organelles that generate most of the energy needed for a cell to function and drive cellular metabolism. Understanding the link between metabolic and mitochondrial function can be challenging due to the variation in methods used to measure mitochondrial function and heterogeneity in mitochondria, cells, tissues, and end organs. Mitochondrial dysfunction can be determined at both the cellular and tissue levels using several methods, such as assessment of cellular bioenergetics, levels of mitochondrial DNA (mtDNA), mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mito-ROS), and levels of mitochondrial enzymes. Recent advances involving novel radiotracers in combination with PET imaging have allowed for the determination of mitochondrial function in vivo with high specificity. Understanding the barriers in existing methodologies used to study mitochondrial function may help further establish the assessment of mitochondrial function as a biologically and clinically relevant biomarker for human disease severity and prognosis. Herein, we critically review the existing literature regarding the strengths and limitations of methods that determine mitochondrial function, and we subsequently discuss how emerging research methods have begun to overcome some of these hurdles. We conclude that a combination of techniques, including respirometry and mitochondrial membrane potential assessment, is necessary to understand the complexity and biological and clinical relevance of mitochondrial function in human disease.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism