{"title":"Let-7 Family as a Mediator of Exercise on Alzheimer's Disease.","authors":"Shanbin Ke, Zhengqiong Liu, Yuwen Wan","doi":"10.1007/s10571-025-01559-9","DOIUrl":null,"url":null,"abstract":"<p><p>Memory loss, and behavioral impairments. Hallmark pathological features include amyloid-beta (Aβ) plaques, tau neurofibrillary tangles, chronic inflammation, and impaired neuronal signaling. Physical exercise is increasingly recognized as a non-pharmacological intervention to attenuate Alzheimer's disease (AD) risk and progression by enhancing neuroplasticity, improving mitochondrial function, and modulating immune responses. The let-7 family of microRNAs is critically involved in AD pathology. Elevated levels of let-7b and let-7e have been reported in the cerebrospinal fluid of AD patients, with let-7b levels correlating positively with total tau and phosphorylated tau concentrations. Overexpression of let-7a enhances Aβ-induced neurotoxicity, increases neuronal apoptosis by up to 45%, and alters autophagy-related signaling via the PI3K/Akt/mTOR pathway, as shown by 1.8-fold increases in LC3-II/I ratios and 2.2-fold upregulation of Beclin-1 expression. Exercise modulates let-7 expression in a tissue-specific and context-dependent manner. Aerobic training reduces skeletal muscle expression of let-7b-5p by 30-35%, while increasing its suppressor Lin28a by 40%, thereby improving mitochondrial respiration. Overall, modulation of let-7 by exercise influences neuronal survival, autophagy, and inflammation, offering a potential mechanism through which physical activity exerts neuroprotective effects in AD. Quantitative characterization of let-7 expression patterns may support its use as a diagnostic and therapeutic biomarker, though further research is needed to establish optimal modulation strategies.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"43"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01559-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory loss, and behavioral impairments. Hallmark pathological features include amyloid-beta (Aβ) plaques, tau neurofibrillary tangles, chronic inflammation, and impaired neuronal signaling. Physical exercise is increasingly recognized as a non-pharmacological intervention to attenuate Alzheimer's disease (AD) risk and progression by enhancing neuroplasticity, improving mitochondrial function, and modulating immune responses. The let-7 family of microRNAs is critically involved in AD pathology. Elevated levels of let-7b and let-7e have been reported in the cerebrospinal fluid of AD patients, with let-7b levels correlating positively with total tau and phosphorylated tau concentrations. Overexpression of let-7a enhances Aβ-induced neurotoxicity, increases neuronal apoptosis by up to 45%, and alters autophagy-related signaling via the PI3K/Akt/mTOR pathway, as shown by 1.8-fold increases in LC3-II/I ratios and 2.2-fold upregulation of Beclin-1 expression. Exercise modulates let-7 expression in a tissue-specific and context-dependent manner. Aerobic training reduces skeletal muscle expression of let-7b-5p by 30-35%, while increasing its suppressor Lin28a by 40%, thereby improving mitochondrial respiration. Overall, modulation of let-7 by exercise influences neuronal survival, autophagy, and inflammation, offering a potential mechanism through which physical activity exerts neuroprotective effects in AD. Quantitative characterization of let-7 expression patterns may support its use as a diagnostic and therapeutic biomarker, though further research is needed to establish optimal modulation strategies.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.