Leonardo F Serafim, Francisco de Azambuja, Parth Rathee, Lukun Wang, Tatjana N Parac-Vogt, Rajeev Prabhakar
{"title":"Hydrolytic Degradation of Key Plastic Pollutant Model Systems by a Discrete Metal-Oxo Cluster: A Combined Theoretical and Experimental Study.","authors":"Leonardo F Serafim, Francisco de Azambuja, Parth Rathee, Lukun Wang, Tatjana N Parac-Vogt, Rajeev Prabhakar","doi":"10.1021/acs.jpcb.5c01255","DOIUrl":null,"url":null,"abstract":"<p><p>Degradation of plastic materials represents one of the major challenges faced by the modern world. In this study, computational and experimental techniques have been employed to investigate the hydrolysis of most commonly used plastic materials poly(ether urethane) (PEU) and polyethylene terephthalate (PET) and their commercially available models ethyl <i>N</i>-phenylcarbamate (ENP) and ethylene glycol dibenzoate (EGD), respectively, by a discrete metal-oxo cluster, Zr-substituted Keggin-type polyoxometalate, (Et<sub>2</sub>NH<sub>2</sub>)<sub>8</sub>[Zr(μ-O)(H<sub>2</sub>O)(PW<sub>11</sub>O<sub>39</sub>)] (<b>ZrK</b>), in which the Zr(IV) catalytic site is stabilized by coordination to a robust metal-oxo core. The all-atom molecular dynamics simulations predicted that all substrates interact with <b>ZrK</b> through water-mediated interactions. The quantum mechanics/molecular mechanics (QM/MM) calculations showed that the lengths of scissile ester and amide bonds of PEU/ENP and the ester bond of PET/EGD are quite similar, and the hydrolysis of PEU and ENP and PET and EGD occurs with similar energetics. According to the most plausible mechanisms, the cleavage of the ester and amide bonds of PEU/ENP takes place with a barrier of 16.5/16.6 and 19.0/20.4 kcal/mol, respectively. However, the scissile ester bond of PET/EGD is hydrolyzed with a barrier of 16.7/16.5 kcal/mol. This computed difference in the rate-limiting barrier of 3.9 kcal/mol between the amide bond of ENP and the ester bond of EGD is supported by the experimentally observed sluggish hydrolysis of ENP in comparison to EGD. While both ENP and EGD were successfully hydrolyzed by <b>ZrK</b> in DMSO solvent at 100 °C, EGD hydrolysis has proven to be much more efficient, with 99% yield obtained within 18 h compared to 48% of ENP hydrolysis observed after 162 h. The combined theoretical and experimental results presented here contribute to the development of potent and robust all-inorganic cluster-based catalysts for the degradation of PEU and PET and suggest that ENP and EGD can be used as excellent model substrates in this endeavor.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"5268-5283"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c01255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Degradation of plastic materials represents one of the major challenges faced by the modern world. In this study, computational and experimental techniques have been employed to investigate the hydrolysis of most commonly used plastic materials poly(ether urethane) (PEU) and polyethylene terephthalate (PET) and their commercially available models ethyl N-phenylcarbamate (ENP) and ethylene glycol dibenzoate (EGD), respectively, by a discrete metal-oxo cluster, Zr-substituted Keggin-type polyoxometalate, (Et2NH2)8[Zr(μ-O)(H2O)(PW11O39)] (ZrK), in which the Zr(IV) catalytic site is stabilized by coordination to a robust metal-oxo core. The all-atom molecular dynamics simulations predicted that all substrates interact with ZrK through water-mediated interactions. The quantum mechanics/molecular mechanics (QM/MM) calculations showed that the lengths of scissile ester and amide bonds of PEU/ENP and the ester bond of PET/EGD are quite similar, and the hydrolysis of PEU and ENP and PET and EGD occurs with similar energetics. According to the most plausible mechanisms, the cleavage of the ester and amide bonds of PEU/ENP takes place with a barrier of 16.5/16.6 and 19.0/20.4 kcal/mol, respectively. However, the scissile ester bond of PET/EGD is hydrolyzed with a barrier of 16.7/16.5 kcal/mol. This computed difference in the rate-limiting barrier of 3.9 kcal/mol between the amide bond of ENP and the ester bond of EGD is supported by the experimentally observed sluggish hydrolysis of ENP in comparison to EGD. While both ENP and EGD were successfully hydrolyzed by ZrK in DMSO solvent at 100 °C, EGD hydrolysis has proven to be much more efficient, with 99% yield obtained within 18 h compared to 48% of ENP hydrolysis observed after 162 h. The combined theoretical and experimental results presented here contribute to the development of potent and robust all-inorganic cluster-based catalysts for the degradation of PEU and PET and suggest that ENP and EGD can be used as excellent model substrates in this endeavor.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.