Easy-to-morph printable conductive Marangoni-driven 3D microdome geometries for fingertip-curved e-skin array with an ultragentle linear touch

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-03-06 DOI:10.1002/inf2.70001
Seung Hwan Jeon, Hyeongho Min, Gui Won Hwang, Jihun Son, Han Joo Kim, Da Wan Kim, Yeon Soo Lee, Chang Hyun Park, Cheonyang Lee, Hyoung-Min Choi, Jinseok Jang, Bo-Gyu Bok, Tae-Heon Yang, Min-Seok Kim, Changhyun Pang
{"title":"Easy-to-morph printable conductive Marangoni-driven 3D microdome geometries for fingertip-curved e-skin array with an ultragentle linear touch","authors":"Seung Hwan Jeon,&nbsp;Hyeongho Min,&nbsp;Gui Won Hwang,&nbsp;Jihun Son,&nbsp;Han Joo Kim,&nbsp;Da Wan Kim,&nbsp;Yeon Soo Lee,&nbsp;Chang Hyun Park,&nbsp;Cheonyang Lee,&nbsp;Hyoung-Min Choi,&nbsp;Jinseok Jang,&nbsp;Bo-Gyu Bok,&nbsp;Tae-Heon Yang,&nbsp;Min-Seok Kim,&nbsp;Changhyun Pang","doi":"10.1002/inf2.70001","DOIUrl":null,"url":null,"abstract":"<p>Continuously printable electronics have the significant advantage of being efficient for fabricating conductive polymer composites; however, the precise tailoring of the 3D hierarchical morphology of conductive nanocomposites in a simple dripping step remains challenging. Here, we introduce a one-step direct printing technique to construct diverse microdome morphologies influenced by the interfacial Marangoni effect and nanoparticle interactions. Using a jet dispenser for continuous processing, we effectively fabricated a soft epidermis-like e-skin containing 64 densely arrayed pressure sensing pixels with a hierarchical dome array for enhanced linearity and ultrasensitivity. The e-skin has 36 temperature-sensing pixels in the outer layer, with a shield-shaped dome that is insensitive to pressure stimuli. Our prosthetic finger inserted with the printed sensor arrays was capable of ultragentle detection and manipulation, such as stably holding a fragile biscuit, using a soft dropper to elaborately produce water droplets and harvesting soft fruits; these activities are challenging for existing high-sensitivity tactile sensors.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuously printable electronics have the significant advantage of being efficient for fabricating conductive polymer composites; however, the precise tailoring of the 3D hierarchical morphology of conductive nanocomposites in a simple dripping step remains challenging. Here, we introduce a one-step direct printing technique to construct diverse microdome morphologies influenced by the interfacial Marangoni effect and nanoparticle interactions. Using a jet dispenser for continuous processing, we effectively fabricated a soft epidermis-like e-skin containing 64 densely arrayed pressure sensing pixels with a hierarchical dome array for enhanced linearity and ultrasensitivity. The e-skin has 36 temperature-sensing pixels in the outer layer, with a shield-shaped dome that is insensitive to pressure stimuli. Our prosthetic finger inserted with the printed sensor arrays was capable of ultragentle detection and manipulation, such as stably holding a fragile biscuit, using a soft dropper to elaborately produce water droplets and harvesting soft fruits; these activities are challenging for existing high-sensitivity tactile sensors.

易于变形的可打印导电marangoni驱动的3D微圆顶几何形状,用于指尖弯曲的电子皮肤阵列,具有超柔软的线性触摸
连续可印刷电子具有制造导电聚合物复合材料的显著优势;然而,在一个简单的滴入步骤中精确剪裁导电纳米复合材料的三维分层形态仍然是一个挑战。在这里,我们介绍了一种一步直接打印技术,可以在界面马兰戈尼效应和纳米颗粒相互作用的影响下构建不同形态的微球。使用喷射分点器进行连续处理,我们有效地制造了一个柔软的表皮状电子皮肤,其中包含64个密集排列的压力传感像素,并具有分层圆顶阵列,以增强线性和超灵敏度。电子皮肤的外层有36个温度感应像素,还有一个对压力刺激不敏感的盾形圆顶。植入打印传感器阵列的假肢手指能够进行超温和的检测和操作,例如稳定地握住易碎的饼干,使用柔软的滴管精心地产生水滴,收获柔软的水果;这些活动对现有的高灵敏度触觉传感器来说是一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信