ChemQuery: A Natural Language Query-Driven Service for Comprehensive Exploration of Chemistry Patent Literature

Shubham Gupta, Rafael Teixeira de Lima, Lokesh Mishra, Cesar Berrospi, Panagiotis Vagenas, Nikolaos Livathinos, Christoph Auer, Michele Dolfi, Peter Staar
{"title":"ChemQuery: A Natural Language Query-Driven Service for Comprehensive Exploration of Chemistry Patent Literature","authors":"Shubham Gupta,&nbsp;Rafael Teixeira de Lima,&nbsp;Lokesh Mishra,&nbsp;Cesar Berrospi,&nbsp;Panagiotis Vagenas,&nbsp;Nikolaos Livathinos,&nbsp;Christoph Auer,&nbsp;Michele Dolfi,&nbsp;Peter Staar","doi":"10.1002/ail2.124","DOIUrl":null,"url":null,"abstract":"<p>Patents are integral to our shared scientific knowledge, requiring companies and inventors to stay informed about them to conduct research, find licensing opportunities, and manage legal risks. However, the rising rate of filings has made this task increasingly challenging over the years. To address this issue, we introduce <span>ChemQuery</span>, a tool for easily exploring chemistry-related patents using natural language questions. Traditional systems rely on simplistic keyword-based searches to find patents that <i>might be</i> relevant to a user's request. In contrast, <span>ChemQuery</span> uses up-to-date information to return specific answers, along with their sources. It also offers a more comprehensive search experience to the users, thanks to capabilities like extracting molecules from diagrams, integrating information from PubChem, and allowing complex queries about molecular structures. We conduct a thorough empirical evaluation of <span>ChemQuery</span> and compare it with several baseline approaches. The results highlight the practical utility and limitations of our tool.</p>","PeriodicalId":72253,"journal":{"name":"Applied AI letters","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ail2.124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied AI letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ail2.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patents are integral to our shared scientific knowledge, requiring companies and inventors to stay informed about them to conduct research, find licensing opportunities, and manage legal risks. However, the rising rate of filings has made this task increasingly challenging over the years. To address this issue, we introduce ChemQuery, a tool for easily exploring chemistry-related patents using natural language questions. Traditional systems rely on simplistic keyword-based searches to find patents that might be relevant to a user's request. In contrast, ChemQuery uses up-to-date information to return specific answers, along with their sources. It also offers a more comprehensive search experience to the users, thanks to capabilities like extracting molecules from diagrams, integrating information from PubChem, and allowing complex queries about molecular structures. We conduct a thorough empirical evaluation of ChemQuery and compare it with several baseline approaches. The results highlight the practical utility and limitations of our tool.

Abstract Image

ChemQuery:用于化学专利文献综合检索的自然语言查询驱动服务
专利是我们共享的科学知识中不可或缺的一部分,要求公司和发明者随时了解它们,以便进行研究,寻找许可机会,并管理法律风险。然而,多年来,申请率的上升使得这项任务越来越具有挑战性。为了解决这个问题,我们介绍了ChemQuery,一个使用自然语言问题轻松探索化学相关专利的工具。传统的系统依赖于简单的基于关键字的搜索来查找可能与用户请求相关的专利。相比之下,ChemQuery使用最新的信息来返回特定的答案及其来源。它还为用户提供了更全面的搜索体验,这要归功于从图表中提取分子、从PubChem中整合信息以及允许对分子结构进行复杂查询等功能。我们对ChemQuery进行了彻底的实证评估,并将其与几种基线方法进行了比较。结果突出了我们的工具的实用性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信