Inkjet-printed reconfigurable and recyclable memristors on paper

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-02-12 DOI:10.1002/inf2.70000
Jinrui Chen, Mingfei Xiao, Zesheng Chen, Sibghah Khan, Saptarsi Ghosh, Nasiruddin Macadam, Zhuo Chen, Binghan Zhou, Guolin Yun, Kasia Wilk, Georgios Psaltakis, Feng Tian, Simon Fairclough, Yang Xu, Rachel Oliver, Tawfique Hasan
{"title":"Inkjet-printed reconfigurable and recyclable memristors on paper","authors":"Jinrui Chen,&nbsp;Mingfei Xiao,&nbsp;Zesheng Chen,&nbsp;Sibghah Khan,&nbsp;Saptarsi Ghosh,&nbsp;Nasiruddin Macadam,&nbsp;Zhuo Chen,&nbsp;Binghan Zhou,&nbsp;Guolin Yun,&nbsp;Kasia Wilk,&nbsp;Georgios Psaltakis,&nbsp;Feng Tian,&nbsp;Simon Fairclough,&nbsp;Yang Xu,&nbsp;Rachel Oliver,&nbsp;Tawfique Hasan","doi":"10.1002/inf2.70000","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS<sub>2</sub> nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With &gt;90% yield from a 16 × 65 device array, our memristors demonstrate robust resistive switching, with &gt;10<sup>5</sup> ON–OFF ratio and &lt;0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS2 nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With >90% yield from a 16 × 65 device array, our memristors demonstrate robust resistive switching, with >105 ON–OFF ratio and <0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.

在纸上喷墨打印可重构和可回收的忆阻器
具有神经和突触功能的可重构忆阻器通过简化系统架构、降低功耗和提高计算效率,在神经形态电路中具有巨大的潜力。基于这些特性,他们在可持续基板上的增材制造进一步为未来的电子产品提供了独特的优势,包括低环境影响。本文利用喷墨印刷MoS2纳米片基电阻层的结构-性能关系,提出了基于纸张的可重构记忆电阻器。我们展示了一个可持续的过程,包括材料剥离,设备制造和设备回收。16 × 65器件阵列的产率>;90%,我们的忆阻器表现出稳健的电阻开关,具有>;105的通断比和<;0.5 V的非易失性工作状态。通过对顺应电流的调制,器件转变为易失状态,开关功耗仅为50pw。这些性能可与最先进的金属氧化物相媲美。我们展示了设备的可回收性,以及在拆卸、材料收集和重新制造后稳定、可重构的操作。我们进一步展示了突触可塑性和神经元泄漏集成和发射功能,在智能包装和模拟医学图像诊断中的一次性应用。我们的工作展示了一条可持续的道路,通向可打印、可重构的神经形态设备,同时对环境的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信