Pol Suárez, Francisco Alcántara-Ávila, Arnau Miró, Jean Rabault, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa
{"title":"Active Flow Control for Drag Reduction Through Multi-agent Reinforcement Learning on a Turbulent Cylinder at \\(Re_D=3900\\)","authors":"Pol Suárez, Francisco Alcántara-Ávila, Arnau Miró, Jean Rabault, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa","doi":"10.1007/s10494-025-00642-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents novel drag reduction active-flow-control (AFC) strategies for a three-dimensional cylinder immersed in a flow at a Reynolds number based on freestream velocity and cylinder diameter of <span>\\(Re_D=3900\\)</span>. The cylinder in this subcritical flow regime has been extensively studied in the literature and is considered a classic case of turbulent flow arising from a bluff body. The strategies presented are explored through the use of deep reinforcement learning. The cylinder is equipped with 10 independent zero-net-mass-flux jet pairs, distributed on the top and bottom surfaces, which define the AFC setup. The method is based on the coupling between a computational-fluid-dynamics solver and a multi-agent reinforcement-learning (MARL) framework using the proximal-policy-optimization algorithm. This work introduces a multi-stage training approach to expand the exploration space and enhance drag reduction stabilization. By accelerating training through the exploitation of local invariants with MARL, a drag reduction of approximately <span>\\(9\\%\\)</span> is achieved. The cooperative closed-loop strategy developed by the agents is sophisticated, as it utilizes a wide bandwidth of mass-flow-rate frequencies, which classical control methods are unable to match. Notably, the mass cost efficiency is demonstrated to be two orders of magnitude lower than that of classical control methods reported in the literature. These developments represent a significant advancement in active flow control in turbulent regimes, critical for industrial applications.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 Simulation and Measurements","pages":"3 - 27"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00642-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00642-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents novel drag reduction active-flow-control (AFC) strategies for a three-dimensional cylinder immersed in a flow at a Reynolds number based on freestream velocity and cylinder diameter of \(Re_D=3900\). The cylinder in this subcritical flow regime has been extensively studied in the literature and is considered a classic case of turbulent flow arising from a bluff body. The strategies presented are explored through the use of deep reinforcement learning. The cylinder is equipped with 10 independent zero-net-mass-flux jet pairs, distributed on the top and bottom surfaces, which define the AFC setup. The method is based on the coupling between a computational-fluid-dynamics solver and a multi-agent reinforcement-learning (MARL) framework using the proximal-policy-optimization algorithm. This work introduces a multi-stage training approach to expand the exploration space and enhance drag reduction stabilization. By accelerating training through the exploitation of local invariants with MARL, a drag reduction of approximately \(9\%\) is achieved. The cooperative closed-loop strategy developed by the agents is sophisticated, as it utilizes a wide bandwidth of mass-flow-rate frequencies, which classical control methods are unable to match. Notably, the mass cost efficiency is demonstrated to be two orders of magnitude lower than that of classical control methods reported in the literature. These developments represent a significant advancement in active flow control in turbulent regimes, critical for industrial applications.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.