{"title":"Variable Resolution in Scale-Resolved Simulations of Turbulence","authors":"Magnus Carlsson, Stefan Wallin, Sharath Girimaji","doi":"10.1007/s10494-024-00591-x","DOIUrl":null,"url":null,"abstract":"<div><p>A new formulation for scale-resolved simulations of turbulence with variable resolution (VR) is proposed. A delayed detached-eddy simulation (DDES) model based on the <span>\\(k-\\omega\\)</span> framework is extended with VR-terms representing the commutation terms arising from variable resolution defined in terms of the DDES length scale. The VR-terms are responsible for the exchange of turbulence kinetic energy between the resolved and unresolved partitioning of the computational representation of turbulent flow. The new formulation is implemented in a general-purpose CFD code and applied on two cases, namely, a mixing shear layer and a wall-mounted hump and have been compared with and combined with the baseline model and two additional grey-area mitigation (GAM) formulations. The proposed method is shown to provide the mechanism for the exchange of energy between unresolved and resolved representation of the flow and to enhance the transition from modelled to resolved turbulence and thus improve the prediction of the resolved Reynolds stresses, development of the vorticity thickness for the shear layer flow and the skin friction recovery length for the hump flow.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 Simulation and Measurements","pages":"105 - 125"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00591-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A new formulation for scale-resolved simulations of turbulence with variable resolution (VR) is proposed. A delayed detached-eddy simulation (DDES) model based on the \(k-\omega\) framework is extended with VR-terms representing the commutation terms arising from variable resolution defined in terms of the DDES length scale. The VR-terms are responsible for the exchange of turbulence kinetic energy between the resolved and unresolved partitioning of the computational representation of turbulent flow. The new formulation is implemented in a general-purpose CFD code and applied on two cases, namely, a mixing shear layer and a wall-mounted hump and have been compared with and combined with the baseline model and two additional grey-area mitigation (GAM) formulations. The proposed method is shown to provide the mechanism for the exchange of energy between unresolved and resolved representation of the flow and to enhance the transition from modelled to resolved turbulence and thus improve the prediction of the resolved Reynolds stresses, development of the vorticity thickness for the shear layer flow and the skin friction recovery length for the hump flow.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.