{"title":"CausalConf: Datasize-Aware Configuration Auto-Tuning for Recurring Big Data Processing Jobs via Adaptive Causal Structure Learning","authors":"Hui Dou;Mingjie He;Lei Zhang;Yiwen Zhang;Zibin Zheng","doi":"10.1109/TPDS.2025.3560304","DOIUrl":null,"url":null,"abstract":"To ensure high-performance processing capabilities across diverse application scenarios, Big Data frameworks such as Spark and Flink usually provide a number of performance-related parameters to configure. Considering the computation scale and the characteristic of repeated executions of typical recurring Big Data processing jobs, how to automatically tune parameters for performance optimization has emerged as a hot research topic in both academic and industry. With the advantages in interpretability and generalization ability, causal inference-based methods recently prove their advancement over conventional search-based and machine learning-based methods. However, the complexity of Big Data frameworks, the time-varying input dataset size of a recurring job and the limitation of a single causal structure learning algorithm together prevent these methods from practical application. Therefore, in this paper, we design and implement CausalConf, a datasize-aware configuration auto-tuning approach for recurring Big Data processing jobs via adaptive causal structure learning. Specifically, the offline training phase is responsible for training multiple datasize-aware causal structure models with different causal structure learning algorithms, while the online tuning phase is responsible for recommending the next promising configuration in an iterative manner via the Multi-Armed Bandit-based optimal intervention set selection as well as the novel datasize-aware causal Bayesian optimization. To evaluate the performance of CausalConf, a series of experiments are conducted on our local Spark cluster with 9 different previously unknown target applications from HiBench. Experimental results show that the performance speed ratio achieved by CausalConf compared to the four recent and representative baselines can respectively reach 1.45×, 1.31×, 1.26× and 1.54× on average and up to 2.53×, 1.55×, 1.57×, 2.18×. Besides, the average total online tuning cost of CausalConf is reduced by 8.85%, 14.26%, 18.58%, and 14.29%, respectively.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 7","pages":"1354-1371"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964084/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure high-performance processing capabilities across diverse application scenarios, Big Data frameworks such as Spark and Flink usually provide a number of performance-related parameters to configure. Considering the computation scale and the characteristic of repeated executions of typical recurring Big Data processing jobs, how to automatically tune parameters for performance optimization has emerged as a hot research topic in both academic and industry. With the advantages in interpretability and generalization ability, causal inference-based methods recently prove their advancement over conventional search-based and machine learning-based methods. However, the complexity of Big Data frameworks, the time-varying input dataset size of a recurring job and the limitation of a single causal structure learning algorithm together prevent these methods from practical application. Therefore, in this paper, we design and implement CausalConf, a datasize-aware configuration auto-tuning approach for recurring Big Data processing jobs via adaptive causal structure learning. Specifically, the offline training phase is responsible for training multiple datasize-aware causal structure models with different causal structure learning algorithms, while the online tuning phase is responsible for recommending the next promising configuration in an iterative manner via the Multi-Armed Bandit-based optimal intervention set selection as well as the novel datasize-aware causal Bayesian optimization. To evaluate the performance of CausalConf, a series of experiments are conducted on our local Spark cluster with 9 different previously unknown target applications from HiBench. Experimental results show that the performance speed ratio achieved by CausalConf compared to the four recent and representative baselines can respectively reach 1.45×, 1.31×, 1.26× and 1.54× on average and up to 2.53×, 1.55×, 1.57×, 2.18×. Besides, the average total online tuning cost of CausalConf is reduced by 8.85%, 14.26%, 18.58%, and 14.29%, respectively.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.