Agung Nugroho Jati;Bambang Riyanto Trilaksono;Egi Muhammad Idris Hidayat;Widyawardana Adiprawita
{"title":"Collaborative Coverage Strategy Using Multiple UAVs-UGVs in CRN Mapping","authors":"Agung Nugroho Jati;Bambang Riyanto Trilaksono;Egi Muhammad Idris Hidayat;Widyawardana Adiprawita","doi":"10.1109/ACCESS.2025.3565779","DOIUrl":null,"url":null,"abstract":"Chemical, Radiological, and Nuclear (CRN) contamination poses a significant threat, potentially leading to mass casualties and long-term environmental repercussions. This paper presents a collaborative framework utilizing a heterogeneous coverage control approach to measure and generate an estimated density distribution map of a designated area. Multiple Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are deployed strategically within partitioned regions, determined through weighted Voronoi tessellation. This method integrates both the robots’ internal parameters and environmental factors. The distinct operational domains of UAVs and UGVs facilitate region decomposition by accounting for variations in CRN dispersion, obstacle representation, and environmental conditions. The resulting cross-partitioned regions are systematically merged to enhance robot distribution efficiency. Each robot autonomously measures within its allocated region, updates contamination data, and generates a dispersion map. The proposed strategy enables an adaptive robot distribution, eliminating uncontaminated grids and improving mapping accuracy. Compared to existing methods, including homogeneous schemes, our approach reduces data variance in CRN-contaminated regions while maintaining mapping efficiency.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"85652-85668"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980321/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical, Radiological, and Nuclear (CRN) contamination poses a significant threat, potentially leading to mass casualties and long-term environmental repercussions. This paper presents a collaborative framework utilizing a heterogeneous coverage control approach to measure and generate an estimated density distribution map of a designated area. Multiple Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are deployed strategically within partitioned regions, determined through weighted Voronoi tessellation. This method integrates both the robots’ internal parameters and environmental factors. The distinct operational domains of UAVs and UGVs facilitate region decomposition by accounting for variations in CRN dispersion, obstacle representation, and environmental conditions. The resulting cross-partitioned regions are systematically merged to enhance robot distribution efficiency. Each robot autonomously measures within its allocated region, updates contamination data, and generates a dispersion map. The proposed strategy enables an adaptive robot distribution, eliminating uncontaminated grids and improving mapping accuracy. Compared to existing methods, including homogeneous schemes, our approach reduces data variance in CRN-contaminated regions while maintaining mapping efficiency.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.