SqSFill : Joint spatial and spectral learning for high-fidelity image inpainting

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zihao Zhang , Feifan Cai , Qin Zhou , Youdong Ding
{"title":"SqSFill : Joint spatial and spectral learning for high-fidelity image inpainting","authors":"Zihao Zhang ,&nbsp;Feifan Cai ,&nbsp;Qin Zhou ,&nbsp;Youdong Ding","doi":"10.1016/j.neucom.2025.130414","DOIUrl":null,"url":null,"abstract":"<div><div>Image inpainting has made significant progress due to recent advances in deep learning. However, most generative inpainting networks face challenges such as producing blurry results that lack high-frequency details or introducing inconsistent structures. To address these issues, we propose a novel transformer-based approach, SqSFill, which exploits rich information in both spatial and spectral domains. Specifically, SqSFill incorporates Rectified Frequency Feature Extractor (RecFFE) in the early layers of the network to capture fine-grained details by leveraging frequency information, guided by frequency loss. Moreover, we design a Scout Attention Block with linear complexity to replace vanilla self-attention, thereby effectively capturing long-range dependencies with lower computational cost. By integrating the RecFFE and Scout Attention Block, SqSFill is able to generate both coherent structures and sharp textures. Extensive experiments demonstrate the proposed SqSFill achieves superior results, outperforming previous state-of-the-art approaches with fewer parameters.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"645 ","pages":"Article 130414"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225010860","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image inpainting has made significant progress due to recent advances in deep learning. However, most generative inpainting networks face challenges such as producing blurry results that lack high-frequency details or introducing inconsistent structures. To address these issues, we propose a novel transformer-based approach, SqSFill, which exploits rich information in both spatial and spectral domains. Specifically, SqSFill incorporates Rectified Frequency Feature Extractor (RecFFE) in the early layers of the network to capture fine-grained details by leveraging frequency information, guided by frequency loss. Moreover, we design a Scout Attention Block with linear complexity to replace vanilla self-attention, thereby effectively capturing long-range dependencies with lower computational cost. By integrating the RecFFE and Scout Attention Block, SqSFill is able to generate both coherent structures and sharp textures. Extensive experiments demonstrate the proposed SqSFill achieves superior results, outperforming previous state-of-the-art approaches with fewer parameters.
SqSFill:用于高保真图像绘制的联合空间和光谱学习
由于深度学习的最新进展,图像绘制取得了重大进展。然而,大多数生成式绘图网络都面临着一些挑战,比如产生缺乏高频细节的模糊结果,或者引入不一致的结构。为了解决这些问题,我们提出了一种新的基于变压器的方法,SqSFill,它利用了空间和光谱域的丰富信息。具体来说,SqSFill在网络的早期层中集成了整流频率特征提取器(RecFFE),通过利用频率信息,在频率损失的指导下捕获细粒度的细节。此外,我们设计了一个具有线性复杂度的Scout注意力块来代替普通的自注意力,从而有效地捕获远程依赖关系,并且计算成本更低。通过整合RecFFE和Scout注意力块,SqSFill能够生成连贯的结构和尖锐的纹理。大量的实验表明,所提出的SqSFill获得了更好的结果,用更少的参数优于以前的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信