{"title":"In silico report on five high-risk protein C pathogenic variants: G403R, P405S, S421N, C238S, and I243T","authors":"Daniela Hristov , Done Stojanov","doi":"10.1016/j.mrfmmm.2025.111907","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose reclassification of 5 out of 16 <em>PROC</em> VUS (variants of uncertain significance): C238S, I243T, G403R, P405S, and S421N, as pathogenic variants, associated with thrombophilia due to <em>PROC</em> deficiency. The obtained results are based on in silico analysis, which enables a detailed assessment of variants’ impact, despite limited clinical evidence. In particular, the G403R substitution, next to the S402-active site, is expected to reduce the flexibility of the local coil domain, affecting the catalytic activity of serine protease. The P405S substitution may imply B-factor gain (P = 0.24; p-value=0.040). On the other hand, the S421N variant causes phosphorylation site disruption at S421, which serves as a target for CK2 phosphorylation. C238S substitution alters metal binding, while the I243T variant may alter transmembrane properties (P = 0.27, P-value=0.00071). All five <em>PROC</em> variants hold promise as diagnostic markers for protein C deficiency and may also serve as potential drug targets for therapeutic intervention.</div></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"831 ","pages":"Article 111907"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510725000107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose reclassification of 5 out of 16 PROC VUS (variants of uncertain significance): C238S, I243T, G403R, P405S, and S421N, as pathogenic variants, associated with thrombophilia due to PROC deficiency. The obtained results are based on in silico analysis, which enables a detailed assessment of variants’ impact, despite limited clinical evidence. In particular, the G403R substitution, next to the S402-active site, is expected to reduce the flexibility of the local coil domain, affecting the catalytic activity of serine protease. The P405S substitution may imply B-factor gain (P = 0.24; p-value=0.040). On the other hand, the S421N variant causes phosphorylation site disruption at S421, which serves as a target for CK2 phosphorylation. C238S substitution alters metal binding, while the I243T variant may alter transmembrane properties (P = 0.27, P-value=0.00071). All five PROC variants hold promise as diagnostic markers for protein C deficiency and may also serve as potential drug targets for therapeutic intervention.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.