{"title":"Nuclear SREBP2 condensates regulate the transcriptional activation of lipogenic genes and cholesterol homeostasis","authors":"Mengqiang Xu, Shi-You Jiang, Shuocheng Tang, Meimei Zhu, Yueer Hu, Juewan Li, Jizhi Yan, Chenyang Qin, Dongxia Tan, Yang An, Yuxiu Qu, Bao-Liang Song, Hanhui Ma, Wei Qi","doi":"10.1038/s42255-025-01291-0","DOIUrl":null,"url":null,"abstract":"<p>The precursor of sterol regulatory element-binding protein-2 (SREBP2) is a membrane-bound transcription factor regulating cholesterol biosynthesis. Under cholesterol-deficient conditions, mature SREBP2 is released from membrane-bound precursors through proteolytic cleavage and enters the nucleus. However, regulation of the transcriptional activity of nuclear SREBP2 (nSREBP2) is poorly understood. In the present study, we reported that nSREBP2 forms nuclear condensates through its amino-terminal, intrinsically disordered region (IDR) and works together with transcription coactivators, partly on superenhancers, for the transcriptional activation of SREBP2 target genes. Substitution of a conserved phenylalanine by alanine within the IDR abolishes the formation of nSREBP2 condensates and reduces its transcriptional activity. This can be effectively rescued by fusion with a phase separation driving FUS-IDR. Knock-in of the phenylalanine-to-alanine substitution in male mice compromises feeding-induced nSREBP2 activity and lowers hepatic and circulating cholesterol levels, underscoring the functional significance of nSREBP2 condensates. Together, the present study reveals that nuclear condensates driven by nSREBP2 N-terminal IDR facilitate the efficient activation of lipogenic genes and play an important role in cholesterol homeostasis.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"38 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01291-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The precursor of sterol regulatory element-binding protein-2 (SREBP2) is a membrane-bound transcription factor regulating cholesterol biosynthesis. Under cholesterol-deficient conditions, mature SREBP2 is released from membrane-bound precursors through proteolytic cleavage and enters the nucleus. However, regulation of the transcriptional activity of nuclear SREBP2 (nSREBP2) is poorly understood. In the present study, we reported that nSREBP2 forms nuclear condensates through its amino-terminal, intrinsically disordered region (IDR) and works together with transcription coactivators, partly on superenhancers, for the transcriptional activation of SREBP2 target genes. Substitution of a conserved phenylalanine by alanine within the IDR abolishes the formation of nSREBP2 condensates and reduces its transcriptional activity. This can be effectively rescued by fusion with a phase separation driving FUS-IDR. Knock-in of the phenylalanine-to-alanine substitution in male mice compromises feeding-induced nSREBP2 activity and lowers hepatic and circulating cholesterol levels, underscoring the functional significance of nSREBP2 condensates. Together, the present study reveals that nuclear condensates driven by nSREBP2 N-terminal IDR facilitate the efficient activation of lipogenic genes and play an important role in cholesterol homeostasis.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.