{"title":"A bovine model of rhizomelic chondrodysplasia punctata caused by a deep intronic splicing variant in the GNPAT gene","authors":"Arnaud Boulling, Julien Corbeau, Cécile Grohs, Anne Barbat, Jérémy Mortier, Sébastien Taussat, Vincent Plassard, Hélène Leclerc, Sébastien Fritz, Cyril Leymarie, Lorraine Bourgeois-Brunel, Alain Ducos, Raphaël Guatteo, Didier Boichard, Mekki Boussaha, Aurélien Capitan","doi":"10.1186/s12711-025-00969-z","DOIUrl":null,"url":null,"abstract":"Genetic defects that occur naturally in livestock species provide valuable models for investigating the molecular mechanisms underlying rare human diseases. Livestock breeds are subject to the regular emergence of recessive genetic defects due to genetic drift and recent inbreeding. At the same time, their large population sizes provide easy access to case and control individuals and to massive amounts of pedigree, genomic and phenotypic information recorded for management and selection purposes. In this study, we investigated a lethal form of recessive chondrodysplasia observed in 21 stillborn calves of the Aubrac beef cattle breed. Detailed examinations of three affected calves revealed proximal limb shortening, epiphyseal calcific deposits, and other pathological signs consistent with human rhizomelic chondrodysplasia punctata, a rare peroxisomal disorder caused by recessive variants in one of five genes (AGPS, FAR1, GNPAT, PEX5, and PEX7). Using homozygosity mapping, whole genome sequencing of two affected individuals, and filtering for variants found in 1867 control genomes, we reduced the list of candidate variants to a single deep intronic substitution in GNPAT (NC_037355.1:g.4039268G > A on chromosome 28 of the ARS-UCD1.2 bovine genome assembly). For verification, we performed large-scale genotyping of this variant using a custom SNP array and found a perfect genotype–phenotype correlation in 21 cases and 26 of their parents, and a complete absence of homozygotes in 1195 unaffected Aubrac controls. The g.4039268A allele segregated at a frequency of 2.6% in this population and was absent in 375,535 additional individuals from 17 breeds. Then, using in vivo and in vitro analyses, we demonstrated that the derived allele activates cryptic splice sites within intron 11 resulting in abnormal transcripts. Finally, by mining the wealth of records available in the French bovine database, we also reported suggestive effects on juvenile mortality (and not just stillbirth) in homozygotes and on muscle development in heterozygotes, which merit further investigation. We report the first spontaneous large animal model of rhizomelic chondrodysplasia punctata and provide a diagnostic test to select against this defect in cattle. Our work also brings interesting insights into the molecular consequences of complete or partial GNPAT insufficiency in mammals.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"148 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00969-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic defects that occur naturally in livestock species provide valuable models for investigating the molecular mechanisms underlying rare human diseases. Livestock breeds are subject to the regular emergence of recessive genetic defects due to genetic drift and recent inbreeding. At the same time, their large population sizes provide easy access to case and control individuals and to massive amounts of pedigree, genomic and phenotypic information recorded for management and selection purposes. In this study, we investigated a lethal form of recessive chondrodysplasia observed in 21 stillborn calves of the Aubrac beef cattle breed. Detailed examinations of three affected calves revealed proximal limb shortening, epiphyseal calcific deposits, and other pathological signs consistent with human rhizomelic chondrodysplasia punctata, a rare peroxisomal disorder caused by recessive variants in one of five genes (AGPS, FAR1, GNPAT, PEX5, and PEX7). Using homozygosity mapping, whole genome sequencing of two affected individuals, and filtering for variants found in 1867 control genomes, we reduced the list of candidate variants to a single deep intronic substitution in GNPAT (NC_037355.1:g.4039268G > A on chromosome 28 of the ARS-UCD1.2 bovine genome assembly). For verification, we performed large-scale genotyping of this variant using a custom SNP array and found a perfect genotype–phenotype correlation in 21 cases and 26 of their parents, and a complete absence of homozygotes in 1195 unaffected Aubrac controls. The g.4039268A allele segregated at a frequency of 2.6% in this population and was absent in 375,535 additional individuals from 17 breeds. Then, using in vivo and in vitro analyses, we demonstrated that the derived allele activates cryptic splice sites within intron 11 resulting in abnormal transcripts. Finally, by mining the wealth of records available in the French bovine database, we also reported suggestive effects on juvenile mortality (and not just stillbirth) in homozygotes and on muscle development in heterozygotes, which merit further investigation. We report the first spontaneous large animal model of rhizomelic chondrodysplasia punctata and provide a diagnostic test to select against this defect in cattle. Our work also brings interesting insights into the molecular consequences of complete or partial GNPAT insufficiency in mammals.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.