Sarah H. Johnson, James B. Smadbeck, Roman M. Zenka, Michael T. Barrett, Athanasios Gaitatzes, Arnav Solanki, Angela B. Florio, Mitesh J. Borad, John C. Cheville, George Vasmatzis
{"title":"Tumor ploidy determination in low-pass whole genome sequencing and allelic copy number visualization using the Constellation Plot","authors":"Sarah H. Johnson, James B. Smadbeck, Roman M. Zenka, Michael T. Barrett, Athanasios Gaitatzes, Arnav Solanki, Angela B. Florio, Mitesh J. Borad, John C. Cheville, George Vasmatzis","doi":"10.1186/s13059-025-03599-2","DOIUrl":null,"url":null,"abstract":"Ploidy determination across the genome has been challenging for low-pass-WGS tumor-only samples. We present BACDAC, a method that calculates tumor ploidy down to 1.2X effective tumor coverage. Allele fraction patterns displayed in the Constellation Plot verify tumor ploidy and reveal subclonal populations. BACDAC outputs a metric, 2N+LOH, that when combined with ploidy better distinguishes near-diploid from high-ploidy tumors. Validated using TCGA, BACDAC had good agreement with other methods and 88% agreement with experimental methods. Discrepancies occur mainly when BACDAC predicts diploidy with subclones rather than high-ploidy. Applied to 653 low-pass-WGS samples spanning 12 cancer subtypes, BACDAC calls 40% as high-ploidy.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"131 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03599-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ploidy determination across the genome has been challenging for low-pass-WGS tumor-only samples. We present BACDAC, a method that calculates tumor ploidy down to 1.2X effective tumor coverage. Allele fraction patterns displayed in the Constellation Plot verify tumor ploidy and reveal subclonal populations. BACDAC outputs a metric, 2N+LOH, that when combined with ploidy better distinguishes near-diploid from high-ploidy tumors. Validated using TCGA, BACDAC had good agreement with other methods and 88% agreement with experimental methods. Discrepancies occur mainly when BACDAC predicts diploidy with subclones rather than high-ploidy. Applied to 653 low-pass-WGS samples spanning 12 cancer subtypes, BACDAC calls 40% as high-ploidy.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.