On the estimation of persistence intensity functions and linear representations of persistence diagrams.

Weichen Wu, Jisu Kim, Alessandro Rinaldo
{"title":"On the estimation of persistence intensity functions and linear representations of persistence diagrams.","authors":"Weichen Wu, Jisu Kim, Alessandro Rinaldo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence diagrams are one of the most popular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which captures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it - called the persistence density function. We present a class of kernel-based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"3610-3618"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Persistence diagrams are one of the most popular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which captures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it - called the persistence density function. We present a class of kernel-based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.

持久性强度函数的估计与持久性图的线性表示。
持久性图是拓扑数据分析中最常用的数据摘要类型之一。分析持久性图的流行统计方法是过滤掉拓扑噪声。在本文中,我们采用了不同的观点,旨在估计随机持久图的实际分布,同时捕获拓扑信号和噪声。为此,Chazal和Divol(2019)证明,在一般情况下,随机持久性图的期望值是一个允许勒贝格密度的度量,称为持久性强度函数。在本文中,我们关注的是持久性强度函数的估计,以及它的一种新的标准化版本——持久性密度函数。我们提出了一类基于核的估计器,该估计器基于持久性图的i - id样本,并推导了上范数下的估计率。作为直接推论,我们获得了估计持久性图(包括Betti数和持久性表面)的线性表示的一致一致性率。有趣的是,持久性密度函数提供了更强的统计保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信