ShinyTHOR app: Shiny-built tumor high-throughput omics-based roadmap.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf061
Eduardo Navarrete-Bencomo, Anthony Vladimir Campos Segura, Orlando R Sevillano, Ana Mayanga, José Luis Buleje Sono, César Alexander Ortiz Rojas, Alexis Germán Murillo Carrasco
{"title":"ShinyTHOR app: Shiny-built tumor high-throughput omics-based roadmap.","authors":"Eduardo Navarrete-Bencomo, Anthony Vladimir Campos Segura, Orlando R Sevillano, Ana Mayanga, José Luis Buleje Sono, César Alexander Ortiz Rojas, Alexis Germán Murillo Carrasco","doi":"10.1093/bioadv/vbaf061","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The Cancer Cell Line Encyclopedia (CCLE), launched in 2008, systematically organizes multi-omic and pharmacological data from over 1000 cancer cell lines with molecular dependency maps accessible through the DepMap tool. However, DepMap lacks tools for systematic comparison of mRNAs, miRNAs, proteins, and metabolites, as well as their links to drug responses and gene signatures. Extracting this data externally requires bioinformatics expertise, limiting access for wet-lab researchers.</p><p><strong>Results: </strong>We developed ShinyTHOR, a web app for intuitive access to multi-omic (transcriptomic, metabolomic, methylomic, proteomic, and miRNomic) and drug-related data. It integrates datasets from CCLE, miRTarBase, circInteractome, and the Genomics of Drug Sensitivity in Cancer. ShinyTHOR includes six modules: (1) identifying top/bottom ten cell lines by marker expression or drug IC50, (2) single-sample Gene Set Enrichment Analysis (ssGSEA), (3) multi-analyte expression evaluation, (4) miRNA-target interactions across cancer types, (5) miRNA impact on mRNA translation via protein levels, and (6) circRNA/miRNA modulation. To validate its utility, we applied ShinyTHOR to a gastric cancer prognosis study (GES7).</p><p><strong>Availability and implementation: </strong>ShinyTHOR is freely accessible for non-commercial use at https://alexismurillo.shinyapps.io/ShinyThor, with source code available at https://github.com/Murillo22/ShinyThor.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf061"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The Cancer Cell Line Encyclopedia (CCLE), launched in 2008, systematically organizes multi-omic and pharmacological data from over 1000 cancer cell lines with molecular dependency maps accessible through the DepMap tool. However, DepMap lacks tools for systematic comparison of mRNAs, miRNAs, proteins, and metabolites, as well as their links to drug responses and gene signatures. Extracting this data externally requires bioinformatics expertise, limiting access for wet-lab researchers.

Results: We developed ShinyTHOR, a web app for intuitive access to multi-omic (transcriptomic, metabolomic, methylomic, proteomic, and miRNomic) and drug-related data. It integrates datasets from CCLE, miRTarBase, circInteractome, and the Genomics of Drug Sensitivity in Cancer. ShinyTHOR includes six modules: (1) identifying top/bottom ten cell lines by marker expression or drug IC50, (2) single-sample Gene Set Enrichment Analysis (ssGSEA), (3) multi-analyte expression evaluation, (4) miRNA-target interactions across cancer types, (5) miRNA impact on mRNA translation via protein levels, and (6) circRNA/miRNA modulation. To validate its utility, we applied ShinyTHOR to a gastric cancer prognosis study (GES7).

Availability and implementation: ShinyTHOR is freely accessible for non-commercial use at https://alexismurillo.shinyapps.io/ShinyThor, with source code available at https://github.com/Murillo22/ShinyThor.

ShinyTHOR应用程序:shine构建的肿瘤高通量组学路线图。
动机:癌症细胞系百科全书(Cancer Cell Line Encyclopedia, CCLE)于2008年推出,系统地组织了来自1000多个癌细胞系的多组学和药理学数据,并通过DepMap工具提供分子依赖图谱。然而,DepMap缺乏系统比较mrna、mirna、蛋白质和代谢物的工具,以及它们与药物反应和基因特征的联系。从外部提取这些数据需要生物信息学专业知识,限制了湿实验室研究人员的访问。结果:我们开发了ShinyTHOR,一个直观访问多组学(转录组学、代谢组学、甲基组学、蛋白质组学和miRNomic)和药物相关数据的web应用程序。它整合了来自CCLE、miRTarBase、circInteractome和癌症药物敏感性基因组学的数据集。ShinyTHOR包括6个模块:(1)通过标记物表达或药物IC50鉴定top/bottom 10个细胞系,(2)单样本基因集富集分析(ssGSEA),(3)多分析物表达评估,(4)不同癌症类型的miRNA-靶点相互作用,(5)miRNA通过蛋白水平影响mRNA翻译,(6)circRNA/miRNA调节。为了验证其有效性,我们将ShinyTHOR应用于胃癌预后研究(GES7)。可用性和实现:ShinyTHOR可以在https://alexismurillo.shinyapps.io/ShinyThor上免费用于非商业用途,源代码可在https://github.com/Murillo22/ShinyThor上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信