cOmicsArt-a customizable Omics Analysis and reporting tool.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf067
Lea Seep, Paul Jonas Jost, Clivia Lisowski, Hao Huang, Stephan Grein, Hildigunnur Hermannsdottir, Katharina Kuellmer, Tobias Fromme, Martin Klingenspor, Elvira Mass, Christian Kurts, Jan Hasenauer
{"title":"cOmicsArt-a customizable Omics Analysis and reporting tool.","authors":"Lea Seep, Paul Jonas Jost, Clivia Lisowski, Hao Huang, Stephan Grein, Hildigunnur Hermannsdottir, Katharina Kuellmer, Tobias Fromme, Martin Klingenspor, Elvira Mass, Christian Kurts, Jan Hasenauer","doi":"10.1093/bioadv/vbaf067","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The availability of bulk-omic data is steadily increasing, necessitating collaborative efforts between experimental and computational researchers. While software tools with graphical user interfaces (GUIs) enable rapid and interactive data assessment, they are limited to pre-implemented methods, often requiring transitions to custom code for further adjustments. However, the most available tools lack GUI-independent reproducibility such as direct integration with R, resulting in very limited support for transition.</p><p><strong>Results: </strong>We introduce the customizable Omics Analysis and reporting tool-cOmicsArt. cOmicsArt aims to enhance collaboration through integration of GUI-based analysis with R. The GUI allows researchers to perform user-friendly exploratory and statistical analyses with interactive visualizations and automatic documentation. Downloadable R scripts and results ensure reproducibility and seamless integration with R, supporting both novice and experienced programmers by enabling easy customizations and serving as a foundation for more advanced analyses. This versatility also allows for usage in educational settings guiding students from GUI-based analysis to R Code.</p><p><strong>Availability and implementation: </strong>cOmicsArt is freely available at https://shiny.iaas.uni-bonn.de/cOmicsArt/. User documentation is available at https://icb-dcm.github.io/cOmicsArt/. Source code is available at https://github.com/ICB-DCM/cOmicsArt. A docker available from https://hub.docker.com/r/pauljonasjost/comicsart/tags. A snapshot upon publication available from https://zenodo.org/records/14907620. A screen recording of cOmicsArt is available at: https://www.youtube.com/watch?v=pTGjtIYQOakp.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf067"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The availability of bulk-omic data is steadily increasing, necessitating collaborative efforts between experimental and computational researchers. While software tools with graphical user interfaces (GUIs) enable rapid and interactive data assessment, they are limited to pre-implemented methods, often requiring transitions to custom code for further adjustments. However, the most available tools lack GUI-independent reproducibility such as direct integration with R, resulting in very limited support for transition.

Results: We introduce the customizable Omics Analysis and reporting tool-cOmicsArt. cOmicsArt aims to enhance collaboration through integration of GUI-based analysis with R. The GUI allows researchers to perform user-friendly exploratory and statistical analyses with interactive visualizations and automatic documentation. Downloadable R scripts and results ensure reproducibility and seamless integration with R, supporting both novice and experienced programmers by enabling easy customizations and serving as a foundation for more advanced analyses. This versatility also allows for usage in educational settings guiding students from GUI-based analysis to R Code.

Availability and implementation: cOmicsArt is freely available at https://shiny.iaas.uni-bonn.de/cOmicsArt/. User documentation is available at https://icb-dcm.github.io/cOmicsArt/. Source code is available at https://github.com/ICB-DCM/cOmicsArt. A docker available from https://hub.docker.com/r/pauljonasjost/comicsart/tags. A snapshot upon publication available from https://zenodo.org/records/14907620. A screen recording of cOmicsArt is available at: https://www.youtube.com/watch?v=pTGjtIYQOakp.

comicsart -可定制组学分析和报告工具。
动机:大量数据的可用性正在稳步增加,这需要实验和计算研究人员之间的合作努力。虽然具有图形用户界面(gui)的软件工具支持快速和交互式的数据评估,但它们仅限于预实现的方法,通常需要转换到自定义代码以进行进一步调整。然而,大多数可用的工具缺乏gui独立的再现性,例如与R的直接集成,导致对转换的支持非常有限。结果:我们推出了可定制的组学分析和报告工具comicsart。cOmicsArt旨在通过基于GUI的分析与r的集成来增强协作。GUI允许研究人员通过交互式可视化和自动文档执行用户友好的探索和统计分析。可下载的R脚本和结果确保了可再现性和与R的无缝集成,支持新手和有经验的程序员,支持简单的自定义,并作为更高级分析的基础。这种多功能性也允许在教育环境中使用,指导学生从基于gui的分析到R代码。可用性和实现:cOmicsArt可在https://shiny.iaas.uni-bonn.de/cOmicsArt/免费获得。用户文档可从https://icb-dcm.github.io/cOmicsArt/获得。源代码可从https://github.com/ICB-DCM/cOmicsArt获得。可从https://hub.docker.com/r/pauljonasjost/comicsart/tags获得docker。发布后的快照可从https://zenodo.org/records/14907620获得。cOmicsArt的屏幕记录可在:https://www.youtube.com/watch?v=pTGjtIYQOakp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信