Robust automatic train pass-by detection combining deep learning and sound level analysis.

IF 1.4 Q3 ACOUSTICS
Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin
{"title":"Robust automatic train pass-by detection combining deep learning and sound level analysis.","authors":"Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin","doi":"10.1121/10.0036754","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.

结合深度学习和声级分析的强大的自动列车通过检测。
控制高噪声水平的需求日益增长,推动了声事件自动检测和分类方法的发展。尽管有很大的烦恼,但很少有工作涉及火车自动过路检测。针对这一问题,本文提出了一种创新的方法。通用分类器识别原始音频信号上的车辆噪声。然后,结合短声级分析和基于mel谱图的分类来改进这一结果,以丢弃除火车过路外的任何东西。在各种长期信号上,观察到90%的时间重叠与参考标定。这种高检出率允许在不同的声景中适当地估计铁路噪声贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信