Chen Bai, Yilin Leng, Haixing Xiao, Lei Li, Wenju Cui, Tan Li, Yuefang Dong, Jian Zheng, Xiuying Cai
{"title":"A deep-learning model for predicting post-stroke cognitive impairment based on brain network damage.","authors":"Chen Bai, Yilin Leng, Haixing Xiao, Lei Li, Wenju Cui, Tan Li, Yuefang Dong, Jian Zheng, Xiuying Cai","doi":"10.21037/qims-24-2010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Post-stroke cognitive impairment (PSCI) is a common and severe complication following acute lacunar stroke (ALS). Due to the limitations of current assessment tools and imaging methods, the early diagnosis of PSCI within 3 months of ALS remaining challenging. This study aimed to develop an effective, reliable, and accurate deep-learning method to predict PSCI within 3 months of ALS.</p><p><strong>Methods: </strong>In total, 100 ALS patients were enrolled in the study, of whom 39 were diagnosed with PSCI and 61 were non-PSCI. First, we quantified three-dimensional (3D) gray-matter damage and white-matter tract disconnection, providing both regional damage (RD) and structural disconnection (SDC) higher-dimensional insights into brain network disruption. Second, we developed a novel deep-learning model based on ResNet18, integrating 3D RD, SDC, and diffusion-weighted imaging (DWI) to provide a comprehensive analysis of brain network integrity and predict PSCI. Finally, we compared the performance of our method with other methods, and visualized brain network damage associated with PSCI.</p><p><strong>Results: </strong>Our model showed strong predictive performance and had a mean accuracy (ACC) of 0.820±0.024, an area under the curve (AUC) of 0.795±0.068, a sensitivity (SEN) of 0.746±0.121, a specificity (SPE) of 0.869±0.044, and a F1-score (F1) of 0.760±0.050 in the five-fold cross-validation, outperforming existing models. In the PSCI patients, brain network damage significantly affected the salience, default mode, and somatic motor networks.</p><p><strong>Conclusions: </strong>This study not only established a model that can accurately predict PSCI, it also identified potential targets for symptom-based treatments, offering new insights into PSCI.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":"15 5","pages":"3964-3981"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-24-2010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Post-stroke cognitive impairment (PSCI) is a common and severe complication following acute lacunar stroke (ALS). Due to the limitations of current assessment tools and imaging methods, the early diagnosis of PSCI within 3 months of ALS remaining challenging. This study aimed to develop an effective, reliable, and accurate deep-learning method to predict PSCI within 3 months of ALS.
Methods: In total, 100 ALS patients were enrolled in the study, of whom 39 were diagnosed with PSCI and 61 were non-PSCI. First, we quantified three-dimensional (3D) gray-matter damage and white-matter tract disconnection, providing both regional damage (RD) and structural disconnection (SDC) higher-dimensional insights into brain network disruption. Second, we developed a novel deep-learning model based on ResNet18, integrating 3D RD, SDC, and diffusion-weighted imaging (DWI) to provide a comprehensive analysis of brain network integrity and predict PSCI. Finally, we compared the performance of our method with other methods, and visualized brain network damage associated with PSCI.
Results: Our model showed strong predictive performance and had a mean accuracy (ACC) of 0.820±0.024, an area under the curve (AUC) of 0.795±0.068, a sensitivity (SEN) of 0.746±0.121, a specificity (SPE) of 0.869±0.044, and a F1-score (F1) of 0.760±0.050 in the five-fold cross-validation, outperforming existing models. In the PSCI patients, brain network damage significantly affected the salience, default mode, and somatic motor networks.
Conclusions: This study not only established a model that can accurately predict PSCI, it also identified potential targets for symptom-based treatments, offering new insights into PSCI.