A facile yeast-display approach for antibody mask discovery.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nithya M Badarinath, Basudeb Mondal, Christopher M Yellman, Kendreze L Holland, Hee Jun Lee, Hathaichanok Phuengkham, Andrew P Cazier, Jaewoo Son, Jacob R Smith, John R Cox, Andrew J Kristof, Yusef A Haikal, Gabriel A Kwong, John Blazeck
{"title":"A facile yeast-display approach for antibody mask discovery.","authors":"Nithya M Badarinath, Basudeb Mondal, Christopher M Yellman, Kendreze L Holland, Hee Jun Lee, Hathaichanok Phuengkham, Andrew P Cazier, Jaewoo Son, Jacob R Smith, John R Cox, Andrew J Kristof, Yusef A Haikal, Gabriel A Kwong, John Blazeck","doi":"10.1093/protein/gzaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Tuning in vivo activity of protein therapeutics can improve their safety. In this vein, it is possible to add a 'mask' moiety to a protein therapeutic such that its ability to bind its target is prevented until the mask has been proteolytically removed, for instance by a tumor-associated protease. As such, new methods to isolate functional masking sequences can aid development of protein therapies. Here, we describe a yeast display-based method to discover peptide sequences that prevent binding of antibody fragments to their antigen target. Our method includes an in situ ability to screen for restoration of binding by scFvs after proteolytic mask removal, and it takes advantage of the antigenic target itself to guide mask discovery. First, we genetically linked a yeast-displayed αPSCA scFv to overlapping 'tiles' of its target. By selecting for reduced antigen binding via flow cytometry, we discovered two peptide masks that we confirmed to be linear epitopes of the PSCA antigen. We then expanded our method towards developing masks for three-dimensional epitopes by using a co-crystal structure of an αHer2 antibody in complex with its antigen to guide combinatorial mask design. In sum, our efforts show the feasibility of employing yeast-displayed, antigen-based libraries to find antibody masks.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning in vivo activity of protein therapeutics can improve their safety. In this vein, it is possible to add a 'mask' moiety to a protein therapeutic such that its ability to bind its target is prevented until the mask has been proteolytically removed, for instance by a tumor-associated protease. As such, new methods to isolate functional masking sequences can aid development of protein therapies. Here, we describe a yeast display-based method to discover peptide sequences that prevent binding of antibody fragments to their antigen target. Our method includes an in situ ability to screen for restoration of binding by scFvs after proteolytic mask removal, and it takes advantage of the antigenic target itself to guide mask discovery. First, we genetically linked a yeast-displayed αPSCA scFv to overlapping 'tiles' of its target. By selecting for reduced antigen binding via flow cytometry, we discovered two peptide masks that we confirmed to be linear epitopes of the PSCA antigen. We then expanded our method towards developing masks for three-dimensional epitopes by using a co-crystal structure of an αHer2 antibody in complex with its antigen to guide combinatorial mask design. In sum, our efforts show the feasibility of employing yeast-displayed, antigen-based libraries to find antibody masks.

一种简单的酵母展示方法用于抗体掩膜的发现。
调节蛋白质治疗药物的体内活性可以提高其安全性。在这种情况下,有可能在治疗性蛋白质中添加“屏蔽”片段,从而阻止其结合靶标的能力,直到屏蔽被蛋白水解去除,例如通过肿瘤相关蛋白酶。因此,分离功能掩蔽序列的新方法可以帮助开发蛋白质治疗方法。在这里,我们描述了一种基于酵母显示的方法来发现阻止抗体片段与其抗原靶标结合的肽序列。我们的方法包括在蛋白水解面罩去除后原位筛选scFvs恢复结合的能力,并且利用抗原靶点本身来指导面罩的发现。首先,我们通过基因将酵母显示的αPSCA scFv与其靶标的重叠“瓷砖”联系起来。通过流式细胞术选择减少抗原结合,我们发现了两个肽掩模,我们确认它们是αPSCA scFv的线性表位。然后,我们扩展了我们的方法,利用αHer2抗体与抗原复合物的共晶结构来开发三维表位的掩膜,以指导组合掩膜设计。总之,我们的努力表明了利用酵母展示的、基于抗原的文库寻找抗体掩模的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信