Nithya M Badarinath, Basudeb Mondal, Christopher M Yellman, Kendreze L Holland, Hee Jun Lee, Hathaichanok Phuengkham, Andrew P Cazier, Jaewoo Son, Jacob R Smith, John R Cox, Andrew J Kristof, Yusef A Haikal, Gabriel A Kwong, John Blazeck
{"title":"A facile yeast-display approach for antibody mask discovery.","authors":"Nithya M Badarinath, Basudeb Mondal, Christopher M Yellman, Kendreze L Holland, Hee Jun Lee, Hathaichanok Phuengkham, Andrew P Cazier, Jaewoo Son, Jacob R Smith, John R Cox, Andrew J Kristof, Yusef A Haikal, Gabriel A Kwong, John Blazeck","doi":"10.1093/protein/gzaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Tuning in vivo activity of protein therapeutics can improve their safety. In this vein, it is possible to add a 'mask' moiety to a protein therapeutic such that its ability to bind its target is prevented until the mask has been proteolytically removed, for instance by a tumor-associated protease. As such, new methods to isolate functional masking sequences can aid development of protein therapies. Here, we describe a yeast display-based method to discover peptide sequences that prevent binding of antibody fragments to their antigen target. Our method includes an in situ ability to screen for restoration of binding by scFvs after proteolytic mask removal, and it takes advantage of the antigenic target itself to guide mask discovery. First, we genetically linked a yeast-displayed αPSCA scFv to overlapping 'tiles' of its target. By selecting for reduced antigen binding via flow cytometry, we discovered two peptide masks that we confirmed to be linear epitopes of the PSCA antigen. We then expanded our method towards developing masks for three-dimensional epitopes by using a co-crystal structure of an αHer2 antibody in complex with its antigen to guide combinatorial mask design. In sum, our efforts show the feasibility of employing yeast-displayed, antigen-based libraries to find antibody masks.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuning in vivo activity of protein therapeutics can improve their safety. In this vein, it is possible to add a 'mask' moiety to a protein therapeutic such that its ability to bind its target is prevented until the mask has been proteolytically removed, for instance by a tumor-associated protease. As such, new methods to isolate functional masking sequences can aid development of protein therapies. Here, we describe a yeast display-based method to discover peptide sequences that prevent binding of antibody fragments to their antigen target. Our method includes an in situ ability to screen for restoration of binding by scFvs after proteolytic mask removal, and it takes advantage of the antigenic target itself to guide mask discovery. First, we genetically linked a yeast-displayed αPSCA scFv to overlapping 'tiles' of its target. By selecting for reduced antigen binding via flow cytometry, we discovered two peptide masks that we confirmed to be linear epitopes of the PSCA antigen. We then expanded our method towards developing masks for three-dimensional epitopes by using a co-crystal structure of an αHer2 antibody in complex with its antigen to guide combinatorial mask design. In sum, our efforts show the feasibility of employing yeast-displayed, antigen-based libraries to find antibody masks.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.