Methods to study polyamine metabolism during osteogenesis.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-20 DOI:10.1016/bs.mie.2025.01.064
Amin Cressman, Fernando A Fierro
{"title":"Methods to study polyamine metabolism during osteogenesis.","authors":"Amin Cressman, Fernando A Fierro","doi":"10.1016/bs.mie.2025.01.064","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian polyamines, namely putrescine, spermidine, and spermine, have been implicated in many cellular homeostatic processes. Polyamines play a critical role in skeletal health as evidenced by recent studies and by skeletal disorders caused by polyamine imbalances, such as Snyder-Robinson Syndrome (SRS). However, very little is still known about the role of polyamines within bone development, homeostasis, and metabolism. Human bone marrow derived mesenchymal stromal cells (MSCs) provide a unique opportunity to study polyamines at a cellular and molecular level within the context of osteogenic differentiation and calcium deposition. Through in vitro work, mechanistic understanding of the role of polyamines within osteogenesis as well as the consequences of polyamine imbalance can provide new insights into potential therapeutics for those experiencing polyaminopathies. This chapter describes procedures to develop a human primary cell culture system and quantify osteoblastogenesis as a function of polyamine modulation.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"715 ","pages":"293-307"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Mammalian polyamines, namely putrescine, spermidine, and spermine, have been implicated in many cellular homeostatic processes. Polyamines play a critical role in skeletal health as evidenced by recent studies and by skeletal disorders caused by polyamine imbalances, such as Snyder-Robinson Syndrome (SRS). However, very little is still known about the role of polyamines within bone development, homeostasis, and metabolism. Human bone marrow derived mesenchymal stromal cells (MSCs) provide a unique opportunity to study polyamines at a cellular and molecular level within the context of osteogenic differentiation and calcium deposition. Through in vitro work, mechanistic understanding of the role of polyamines within osteogenesis as well as the consequences of polyamine imbalance can provide new insights into potential therapeutics for those experiencing polyaminopathies. This chapter describes procedures to develop a human primary cell culture system and quantify osteoblastogenesis as a function of polyamine modulation.

方法研究成骨过程中多胺代谢。
哺乳动物多胺,即腐胺、亚精胺和精胺,与许多细胞内稳态过程有关。最近的研究证明,多胺在骨骼健康中起着至关重要的作用,多胺失衡引起的骨骼疾病,如Snyder-Robinson综合征(SRS)。然而,关于多胺在骨骼发育、体内平衡和代谢中的作用,我们所知甚少。人骨髓间充质基质细胞(MSCs)为在成骨分化和钙沉积的背景下在细胞和分子水平上研究多胺提供了一个独特的机会。通过体外实验,了解多胺在成骨过程中的作用以及多胺失衡的后果,可以为多胺病的潜在治疗提供新的见解。本章描述了开发人类原代细胞培养系统的程序,并将成骨细胞形成作为多胺调节的功能进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信