{"title":"Wearable Sensors and Artificial Intelligence for Sleep Apnea Detection: A Systematic Review.","authors":"Ainhoa Osa-Sanchez, Javier Ramos-Martinez-de-Soria, Amaia Mendez-Zorrilla, Ibon Oleagordia Ruiz, Begonya Garcia-Zapirain","doi":"10.1007/s10916-025-02199-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep apnea, a prevalent disorder affecting millions of people worldwide, has attracted increasing attention in recent years due to its significant impact on public health and quality of life. The integration of wearable devices and artificial intelligence technologies has revolutionized the treatment and diagnosis of sleep apnea. Leveraging the portability and sensors of wearable devices, coupled with AI algorithms, has enabled real-time monitoring and accurate analysis of sleep patterns, facilitating early detection and personalized interventions for people suffering from sleep apnea. This article presents a systematic review of the current state of the art in identifying the latest artificial intelligence techniques, wearable devices, data types, and preprocessing methods employed in the diagnosis of sleep apnea. Four databases were used and the results before screening report 249 studies published between 2020 and 2024. After screening, 28 studies met the inclusion criteria. This review reveals a trend in recent years where methodologies involving patches, clocks and rings have been increasingly integrated with convolutional neural networks, producing promising results, particularly when combined with transfer learning techniques. We observed that the outcomes of various algorithms and their combinations also rely on the quantity and type of data utilized for training. The findings suggest that employing multiple combinations of different neural networks with convolutional layers contributes to the development of a more precise system for early diagnosis of sleep apnea.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"66"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02199-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep apnea, a prevalent disorder affecting millions of people worldwide, has attracted increasing attention in recent years due to its significant impact on public health and quality of life. The integration of wearable devices and artificial intelligence technologies has revolutionized the treatment and diagnosis of sleep apnea. Leveraging the portability and sensors of wearable devices, coupled with AI algorithms, has enabled real-time monitoring and accurate analysis of sleep patterns, facilitating early detection and personalized interventions for people suffering from sleep apnea. This article presents a systematic review of the current state of the art in identifying the latest artificial intelligence techniques, wearable devices, data types, and preprocessing methods employed in the diagnosis of sleep apnea. Four databases were used and the results before screening report 249 studies published between 2020 and 2024. After screening, 28 studies met the inclusion criteria. This review reveals a trend in recent years where methodologies involving patches, clocks and rings have been increasingly integrated with convolutional neural networks, producing promising results, particularly when combined with transfer learning techniques. We observed that the outcomes of various algorithms and their combinations also rely on the quantity and type of data utilized for training. The findings suggest that employing multiple combinations of different neural networks with convolutional layers contributes to the development of a more precise system for early diagnosis of sleep apnea.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.