Pankaj Rohilla, Daehyun Choi, Halley Wallace, Kai Lauren Yung, Juhi Deora, Atharva Lele, Saad Bhamla
{"title":"Mastering the Manu-how humans create large splashes.","authors":"Pankaj Rohilla, Daehyun Choi, Halley Wallace, Kai Lauren Yung, Juhi Deora, Atharva Lele, Saad Bhamla","doi":"10.1098/rsfs.2024.0056","DOIUrl":null,"url":null,"abstract":"<p><p>Manu jumping, a popular water diving style among M <math><mover><mtext>a</mtext> <mo>¯</mo></mover> </math> ori people in New Zealand, focuses on creating large splashes. Divers perform aerial manoeuvres such as the 'utkatasana' pose, entering the water in a V-shape, and executing underwater manoeuvres to enhance the splash size. Our study explores the underlying fluid dynamics of Manu jumping and demonstrates how two key parameters, the V-angle and the timing of body opening, can enhance Worthington jet formation. To accurately replicate human Manu jumping, we studied water entry of both passive solid objects with varying V-angles and an active body opening robot (Manubot). The analysis revealed that a 45° V-angle enhances Worthington jet formation, consistent with human diving data. This angle balances a large cavity size and a deep pinch-off depth. The body opening within a timing window of <math> <mstyle> <mrow> <msub> <mrow><mover><mi>t</mi> <mo>^</mo></mover> </mrow> <mrow><mi>r</mi></mrow> </msub> <mo>=</mo> <mn>1.1</mn> <mspace></mspace> <mo>-</mo> <mspace></mspace> <mn>1.5</mn></mrow> </mstyle> </math> synchronizes the robot's potential energies to be timely transferred to the cavity formation, producing the strongest and most vertical, i.e. ideal, Worthington jets. Based on our experimental findings, we propose a range of parameters for generating the large Manu splashes. These insights offer engineering perspectives on how to modulate underwater cavity dynamics using both passive and active body formations.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"15 2","pages":"20240056"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manu jumping, a popular water diving style among M ori people in New Zealand, focuses on creating large splashes. Divers perform aerial manoeuvres such as the 'utkatasana' pose, entering the water in a V-shape, and executing underwater manoeuvres to enhance the splash size. Our study explores the underlying fluid dynamics of Manu jumping and demonstrates how two key parameters, the V-angle and the timing of body opening, can enhance Worthington jet formation. To accurately replicate human Manu jumping, we studied water entry of both passive solid objects with varying V-angles and an active body opening robot (Manubot). The analysis revealed that a 45° V-angle enhances Worthington jet formation, consistent with human diving data. This angle balances a large cavity size and a deep pinch-off depth. The body opening within a timing window of synchronizes the robot's potential energies to be timely transferred to the cavity formation, producing the strongest and most vertical, i.e. ideal, Worthington jets. Based on our experimental findings, we propose a range of parameters for generating the large Manu splashes. These insights offer engineering perspectives on how to modulate underwater cavity dynamics using both passive and active body formations.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.