{"title":"Deep learning feature-based model for predicting lymphovascular invasion in urothelial carcinoma of bladder using CT images.","authors":"Bangxin Xiao, Yang Lv, Canjie Peng, Zongjie Wei, Qiao Xv, Fajin Lv, Qing Jiang, Huayun Liu, Feng Li, Yingjie Xv, Quanhao He, Mingzhao Xiao","doi":"10.1186/s13244-025-01988-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images.</p><p><strong>Methods: </strong>Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy.</p><p><strong>Results: </strong>The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data.</p><p><strong>Conclusion: </strong>We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning.</p><p><strong>Critical relevance statement: </strong>We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder.</p><p><strong>Key points: </strong>We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"108"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01988-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images.
Methods: Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy.
Results: The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data.
Conclusion: We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning.
Critical relevance statement: We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder.
Key points: We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.