Redox Differences Between Neurons and Astrocytes In Vivo in Ischemic Brain Tissues of Rodents.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daria A Kotova, Aleksandra D Ivanova, Ilya V Kelmanson, Kseniia I Morozova, Yulia V Khramova, Maxim A Solotenkov, Evgeny A Stepanov, Aleksandr A Moshchenko, Alisa B Tiaglik, Anna A Fedotova, Anton V Zalygin, Vladimir A Oleinikov, Alexey G Katrukha, Alexey Semyanov, Vsevolod V Belousov, Andrei B Fedotov, Ilya V Fedotov, Nadezda A Brazhe, Dmitry S Bilan
{"title":"Redox Differences Between Neurons and Astrocytes <i>In Vivo</i> in Ischemic Brain Tissues of Rodents.","authors":"Daria A Kotova, Aleksandra D Ivanova, Ilya V Kelmanson, Kseniia I Morozova, Yulia V Khramova, Maxim A Solotenkov, Evgeny A Stepanov, Aleksandr A Moshchenko, Alisa B Tiaglik, Anna A Fedotova, Anton V Zalygin, Vladimir A Oleinikov, Alexey G Katrukha, Alexey Semyanov, Vsevolod V Belousov, Andrei B Fedotov, Ilya V Fedotov, Nadezda A Brazhe, Dmitry S Bilan","doi":"10.1089/ars.2024.0876","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Reactive oxygen species (ROS) are considered to play a key damaging role in brain during the development of ischemic stroke. To clarify how different ROS contribute to ischemic pathogenesis, innovative approaches for real-time <i>in vivo</i> detection of redox parameters are necessary. <b><i>Results:</i></b> Using highly sensitive genetically encoded biosensor HyPer7 and a fiber-optic neurointerface technology, we demonstrated that the level of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) slowly increases in neurons and astrocytes of the ischemic area of the rat brain after middle cerebral artery occlusion during next 40 h; notably, in astrocytes the level is somewhat higher. Raman microspectroscopy in awake mice also revealed redox differences between mitochondria of neurons and astrocytes during acute ischemia caused by photothrombosis. Astrocytes demonstrated the overloading of the electron transport chain (ETC) with electrons after 1 h of ischemia, whereas neurons do not demonstrate changes in the amount of reduced electron carries. <b><i>Innovation and Conclusion:</i></b> The combination of novel <i>in vivo</i> approaches allows to detail redox events with spatiotemporal resolution. We demonstrated redox difference between neurons and astrocytes in damaged brain areas <i>in vivo</i>. An elevated loading of astrocytic ETC with electrons during the acute ischemia phase provides basis for the increased generation of superoxide anion radical (O<sub>2</sub><sup>•-</sup>) with its following conversion to other reactive species. However, we observed increased H<sub>2</sub>O<sub>2</sub> concentrations in astrocytes and neurons at later pathogenesis stages. During this period, ETC did not demonstrate an elevated loading with electrons, and therefore, increased H<sub>2</sub>O<sub>2</sub> generation may be a phenomenon of secondary redox events. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0876","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Reactive oxygen species (ROS) are considered to play a key damaging role in brain during the development of ischemic stroke. To clarify how different ROS contribute to ischemic pathogenesis, innovative approaches for real-time in vivo detection of redox parameters are necessary. Results: Using highly sensitive genetically encoded biosensor HyPer7 and a fiber-optic neurointerface technology, we demonstrated that the level of hydrogen peroxide (H2O2) slowly increases in neurons and astrocytes of the ischemic area of the rat brain after middle cerebral artery occlusion during next 40 h; notably, in astrocytes the level is somewhat higher. Raman microspectroscopy in awake mice also revealed redox differences between mitochondria of neurons and astrocytes during acute ischemia caused by photothrombosis. Astrocytes demonstrated the overloading of the electron transport chain (ETC) with electrons after 1 h of ischemia, whereas neurons do not demonstrate changes in the amount of reduced electron carries. Innovation and Conclusion: The combination of novel in vivo approaches allows to detail redox events with spatiotemporal resolution. We demonstrated redox difference between neurons and astrocytes in damaged brain areas in vivo. An elevated loading of astrocytic ETC with electrons during the acute ischemia phase provides basis for the increased generation of superoxide anion radical (O2•-) with its following conversion to other reactive species. However, we observed increased H2O2 concentrations in astrocytes and neurons at later pathogenesis stages. During this period, ETC did not demonstrate an elevated loading with electrons, and therefore, increased H2O2 generation may be a phenomenon of secondary redox events. Antioxid. Redox Signal. 00, 000-000.

啮齿动物缺血脑组织中神经元和星形胶质细胞氧化还原差异
目的:活性氧(Reactive oxygen species, ROS)被认为在缺血性脑卒中的发展过程中起着关键的脑损伤作用。为了阐明不同的活性氧如何促进缺血发病机制,有必要采用创新的方法实时检测体内氧化还原参数。结果:利用高敏感的基因编码生物传感器HyPer7和光纤神经接口技术,我们发现在大脑中动脉闭塞后的40小时内,大鼠大脑缺血区神经元和星形胶质细胞中的过氧化氢(H2O2)水平缓慢升高;值得注意的是,在星形胶质细胞中,这一水平略高。清醒小鼠的拉曼显微光谱也揭示了光血栓形成引起的急性缺血时神经元和星形胶质细胞线粒体氧化还原的差异。星形胶质细胞在缺血1小时后表现出电子传递链(ETC)的过载,而神经元则没有表现出减少电子携带量的变化。创新和结论:结合新的体内方法可以详细描述氧化还原事件的时空分辨率。我们在体内证明了神经元和星形胶质细胞在受损脑区的氧化还原差异。急性缺血期星形细胞ETC的电子负荷升高,为超氧阴离子自由基(O2•-)的生成增加及其随后转化为其他活性物质提供了基础。然而,我们观察到在发病后期星形胶质细胞和神经元中H2O2浓度升高。在此期间,ETC没有表现出电子负载的增加,因此,H2O2生成的增加可能是二次氧化还原事件的现象。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信