Karl O R Juul, Kristoffer A H Støckler, Bo B Iversen
{"title":"Benchmarking 3D-ΔPDF analysis using in-house X-ray sources.","authors":"Karl O R Juul, Kristoffer A H Støckler, Bo B Iversen","doi":"10.1107/S2053273325003389","DOIUrl":null,"url":null,"abstract":"<p><p>New detector technology has in recent years improved the data quality available from in-house X-ray diffractometers. A recent study compared high-resolution low-temperature X-ray diffraction data obtained from modern in-house diffractometers with synchrotron data in relation to extracting subtle electron-density details using the multipole model [Vosegaard et al. (2023). Acta Cryst. B79, 380-391]. It was concluded that for organic molecular crystals excellent agreement can be obtained, and only subtle electron-density details are better resolved at the synchrotron sources. This study aims to benchmark the quality of weak diffuse scattering data and three-dimensional difference pair-distribution function (3D-ΔPDF) analysis for in-house X-ray sources against more accurate and better resolved synchrotron data using three examples (Cu<sub>1.95</sub>Se, Nb<sub>1-x</sub>CoSb and InTe). Since the 3D-ΔPDF method is still relatively new in crystallographic research, we also provide a general description of the pipeline of analysis. The three selected systems highlight important differences in correlated disorder and the corresponding analysis. In all three cases, the synchrotron data have better signal-to-noise ratios and extend to higher scattering vectors. Using the in-house 3D-ΔPDF on Cu<sub>1.95</sub>Se, the same ordered 2D superstructure can be determined as for the synchrotron data, although additional arguments based on order within a 2D supercell or on ionic radii must be used to obtain an adequate model. For Nb<sub>1-x</sub>CoSb, the preference for vacancies to avoid each other and the size effect associated with structural relaxation of the lattice near vacancies can also be observed and assigned in the in-house 3D-ΔPDF. For InTe, the weak diffuse scattering, radial broadening and higher temperature than the original study mean that, although most of the important features are visible in the in-house data, some features are obscured, and the full correlated disorder model cannot be constructed. Overall, it is found that many of the conclusions derived from synchrotron data can also be extracted from in-house data, but in some cases additional postulates are needed, and in general subtle details may be too noisy to be properly interpreted in the in-house data.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"254-268"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273325003389","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New detector technology has in recent years improved the data quality available from in-house X-ray diffractometers. A recent study compared high-resolution low-temperature X-ray diffraction data obtained from modern in-house diffractometers with synchrotron data in relation to extracting subtle electron-density details using the multipole model [Vosegaard et al. (2023). Acta Cryst. B79, 380-391]. It was concluded that for organic molecular crystals excellent agreement can be obtained, and only subtle electron-density details are better resolved at the synchrotron sources. This study aims to benchmark the quality of weak diffuse scattering data and three-dimensional difference pair-distribution function (3D-ΔPDF) analysis for in-house X-ray sources against more accurate and better resolved synchrotron data using three examples (Cu1.95Se, Nb1-xCoSb and InTe). Since the 3D-ΔPDF method is still relatively new in crystallographic research, we also provide a general description of the pipeline of analysis. The three selected systems highlight important differences in correlated disorder and the corresponding analysis. In all three cases, the synchrotron data have better signal-to-noise ratios and extend to higher scattering vectors. Using the in-house 3D-ΔPDF on Cu1.95Se, the same ordered 2D superstructure can be determined as for the synchrotron data, although additional arguments based on order within a 2D supercell or on ionic radii must be used to obtain an adequate model. For Nb1-xCoSb, the preference for vacancies to avoid each other and the size effect associated with structural relaxation of the lattice near vacancies can also be observed and assigned in the in-house 3D-ΔPDF. For InTe, the weak diffuse scattering, radial broadening and higher temperature than the original study mean that, although most of the important features are visible in the in-house data, some features are obscured, and the full correlated disorder model cannot be constructed. Overall, it is found that many of the conclusions derived from synchrotron data can also be extracted from in-house data, but in some cases additional postulates are needed, and in general subtle details may be too noisy to be properly interpreted in the in-house data.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.