Investigations of Microstructures and Properties of SPEEK-[BMIm][OTf] Ionic Liquid Composite Membrane for Fuel Cells

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Shute Yu, Lanlan Qin, Zhaohong Miao, Jian Zhou
{"title":"Investigations of Microstructures and Properties of SPEEK-[BMIm][OTf] Ionic Liquid Composite Membrane for Fuel Cells","authors":"Shute Yu,&nbsp;Lanlan Qin,&nbsp;Zhaohong Miao,&nbsp;Jian Zhou","doi":"10.1002/mats.202400080","DOIUrl":null,"url":null,"abstract":"<p>Utilizing ionic liquids in proton exchange membranes can greatly enhance the performance of fuel cells, enabling their application in high-temperature and dry conditions. Further advancements in this field depend on a fundamental comprehension of their structural characteristics. This study focuses on the sulfonated poly(ether ether ketone) (SPEEK)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIm][OTf] composite membrane system. Effects of sulfonation degree, ionic liquid content, and temperature on the structure and conductivity of the composite membrane are investigated by dissipative particle dynamics (DPD) and molecular dynamics (MD) simulations. Results show that [BMIm][OTf] is predominantly distributed around the sulfonic acid groups of SPEEK. At an optimal sulfonation degree and ionic liquid content, interconnected ionic liquid channels can be formed. Nevertheless, an excessively high sulfonation degree may jeopardize the stability of the membrane structure. Moreover, the aggregation of ionic liquid occurs at a high level of ionic liquid content, which hinders the efficient transfer of protons. Generally, increasing the temperature is more conducive to the formation of monodisperse ionic liquid channels within the SPEEK-[BMIm][OTf] composite membrane; however, overhigh temperature may compromise the integrity of the composite membrane structure. The findings of this study offer molecular insights for the development of high-temperature proton exchange membrane fuel cell systems.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing ionic liquids in proton exchange membranes can greatly enhance the performance of fuel cells, enabling their application in high-temperature and dry conditions. Further advancements in this field depend on a fundamental comprehension of their structural characteristics. This study focuses on the sulfonated poly(ether ether ketone) (SPEEK)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIm][OTf] composite membrane system. Effects of sulfonation degree, ionic liquid content, and temperature on the structure and conductivity of the composite membrane are investigated by dissipative particle dynamics (DPD) and molecular dynamics (MD) simulations. Results show that [BMIm][OTf] is predominantly distributed around the sulfonic acid groups of SPEEK. At an optimal sulfonation degree and ionic liquid content, interconnected ionic liquid channels can be formed. Nevertheless, an excessively high sulfonation degree may jeopardize the stability of the membrane structure. Moreover, the aggregation of ionic liquid occurs at a high level of ionic liquid content, which hinders the efficient transfer of protons. Generally, increasing the temperature is more conducive to the formation of monodisperse ionic liquid channels within the SPEEK-[BMIm][OTf] composite membrane; however, overhigh temperature may compromise the integrity of the composite membrane structure. The findings of this study offer molecular insights for the development of high-temperature proton exchange membrane fuel cell systems.

燃料电池用SPEEK-[BMIm][OTf]离子液体复合膜的微观结构和性能研究
在质子交换膜中使用离子液体可以大大提高燃料电池的性能,使其能够在高温和干燥条件下应用。这一领域的进一步发展取决于对其结构特征的基本理解。研究了磺化聚醚醚酮(SPEEK)-1-丁基-3-甲基咪唑三氟甲烷磺酸盐[BMIm][OTf]复合膜体系。采用耗散粒子动力学(DPD)和分子动力学(MD)模拟研究了磺化程度、离子液体含量和温度对复合膜结构和电导率的影响。结果表明,[BMIm][OTf]主要分布在SPEEK的磺酸基周围。在最佳磺化度和离子液体含量下,可以形成相互连接的离子液体通道。然而,过高的磺化度可能会危及膜结构的稳定性。此外,离子液体的聚集发生在离子液体含量高的情况下,这阻碍了质子的有效转移。一般来说,升高温度更有利于SPEEK-[BMIm][OTf]复合膜内单分散离子液体通道的形成;然而,过高的温度可能会损害复合膜结构的完整性。本研究结果为高温质子交换膜燃料电池系统的发展提供了分子视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信