{"title":"Unveiling the influence of fastest nobel prize winner discovery: alphafold’s algorithmic intelligence in medical sciences","authors":"Niki Najar Najafi, Reyhaneh Karbassian, Helia Hajihassani, Maryam Azimzadeh Irani","doi":"10.1007/s00894-025-06392-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>AlphaFold’s advanced AI technology has transformed protein structure interpretation. By predicting three-dimensional protein structures from amino acid sequences, AlphaFold has solved the complex protein-folding problem, previously challenging for experimental methods due to numerous possible conformations. Since its inception, AlphaFold has introduced several versions, including AlphaFold2, AlphaFold DB, AlphaFold Multimer, Alpha Missense, and AlphaFold3, each further enhancing protein structure prediction. Remarkably, AlphaFold is recognized as the fastest Nobel Prize winner in science history. This technology has extensive applications, potentially transforming treatment and diagnosis in medical sciences by reducing drug design costs and time, while elucidating structural pathways of human body systems. Numerous studies have demonstrated how AlphaFold aids in understanding health conditions by providing critical information about protein mutations, abnormal protein–protein interactions, and changes in protein dynamics. Researchers have also developed new technologies and pipelines using different versions of AlphaFold to amplify its potential. However, addressing existing limitations is crucial to maximizing AlphaFold’s capacity to redefine medical research. This article reviews AlphaFold’s impact on five key aspects of medical sciences: protein mutation, protein–protein interaction, molecular dynamics, drug design, and immunotherapy.</p><h3>Methods</h3><p>This review examines the contributions of various AlphaFold versions AlphaFold2, AlphaFold DB, AlphaFold Multimer, Alpha Missense, and AlphaFold3 to protein structure prediction. The methods include an extensive analysis of computational techniques and software used in interpreting and predicting protein structures, emphasizing advances in AI technology and its applications in medical research.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06392-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
AlphaFold’s advanced AI technology has transformed protein structure interpretation. By predicting three-dimensional protein structures from amino acid sequences, AlphaFold has solved the complex protein-folding problem, previously challenging for experimental methods due to numerous possible conformations. Since its inception, AlphaFold has introduced several versions, including AlphaFold2, AlphaFold DB, AlphaFold Multimer, Alpha Missense, and AlphaFold3, each further enhancing protein structure prediction. Remarkably, AlphaFold is recognized as the fastest Nobel Prize winner in science history. This technology has extensive applications, potentially transforming treatment and diagnosis in medical sciences by reducing drug design costs and time, while elucidating structural pathways of human body systems. Numerous studies have demonstrated how AlphaFold aids in understanding health conditions by providing critical information about protein mutations, abnormal protein–protein interactions, and changes in protein dynamics. Researchers have also developed new technologies and pipelines using different versions of AlphaFold to amplify its potential. However, addressing existing limitations is crucial to maximizing AlphaFold’s capacity to redefine medical research. This article reviews AlphaFold’s impact on five key aspects of medical sciences: protein mutation, protein–protein interaction, molecular dynamics, drug design, and immunotherapy.
Methods
This review examines the contributions of various AlphaFold versions AlphaFold2, AlphaFold DB, AlphaFold Multimer, Alpha Missense, and AlphaFold3 to protein structure prediction. The methods include an extensive analysis of computational techniques and software used in interpreting and predicting protein structures, emphasizing advances in AI technology and its applications in medical research.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.