The long-term optical flux variations of Compact Symmetric Objects

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Subhashree Swain, Vaidehi S. Paliya, D. J. Saikia, C. S. Stalin, Arya Venugopal, A. K. Bhavya, C. D. Ravikumar
{"title":"The long-term optical flux variations of Compact Symmetric Objects","authors":"Subhashree Swain,&nbsp;Vaidehi S. Paliya,&nbsp;D. J. Saikia,&nbsp;C. S. Stalin,&nbsp;Arya Venugopal,&nbsp;A. K. Bhavya,&nbsp;C. D. Ravikumar","doi":"10.1007/s10509-025-04436-5","DOIUrl":null,"url":null,"abstract":"<div><p>Compact Symmetric Objects (CSOs) are a distinct category of jetted active galactic nuclei (AGN) whose optical variability characteristics have not been well investigated. We present here the results of our investigation on the optical flux and colour variability properties of a bona fide sample of 38 CSOs. We used the <span>\\(g\\)</span>-, <span>\\(r\\)</span>- and <span>\\(i\\)</span>-bands data from the Zwicky Transient Facility survey that spans a duration of about 5 years. We also considered a comparison sub-sample of blazars that includes 5 flat spectrum radio quasars and 12 BL Lac objects with redshifts and <span>\\(g\\)</span>-band magnitudes similar to the limited sub-sample of 9 CSOs. These two sub-samples of AGN, chosen for this comparative study of their long-term optical variability, represent different orientations of their relativistic jets with respect to the observer. We found that both CSOs and blazars exhibit optical flux variations, although variability of CSOs is lower than that of blazars. The observed variability in both CSOs and blazars is attributed to the relativistic jets and the increased optical variations in blazars relative to CSOs are likely due to beaming effects. CSOs and blazars exhibit similar colour variations, with both of them showing a bluer when brighter trend. Such a colour variability pattern is expected due to processes associated with their relativistic jets.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04436-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compact Symmetric Objects (CSOs) are a distinct category of jetted active galactic nuclei (AGN) whose optical variability characteristics have not been well investigated. We present here the results of our investigation on the optical flux and colour variability properties of a bona fide sample of 38 CSOs. We used the \(g\)-, \(r\)- and \(i\)-bands data from the Zwicky Transient Facility survey that spans a duration of about 5 years. We also considered a comparison sub-sample of blazars that includes 5 flat spectrum radio quasars and 12 BL Lac objects with redshifts and \(g\)-band magnitudes similar to the limited sub-sample of 9 CSOs. These two sub-samples of AGN, chosen for this comparative study of their long-term optical variability, represent different orientations of their relativistic jets with respect to the observer. We found that both CSOs and blazars exhibit optical flux variations, although variability of CSOs is lower than that of blazars. The observed variability in both CSOs and blazars is attributed to the relativistic jets and the increased optical variations in blazars relative to CSOs are likely due to beaming effects. CSOs and blazars exhibit similar colour variations, with both of them showing a bluer when brighter trend. Such a colour variability pattern is expected due to processes associated with their relativistic jets.

紧致对称天体的长期光通量变化
紧致对称天体(cso)是一类独特的喷射活动星系核(AGN),其光学变异性尚未得到很好的研究。我们在这里提出了我们对38个cso的真实样品的光通量和颜色可变性特性的调查结果。我们使用了Zwicky瞬变设施调查的\(g\) -, \(r\) -和\(i\) -波段数据,跨度约为5年。我们还考虑了blazars的比较子样本,其中包括5个平谱射电类星体和12个BL Lac天体,它们的红移和\(g\)波段星等与9个CSOs的有限子样本相似。这两个AGN的子样本,被选择用来比较它们的长期光学变异性,代表了相对于观察者的相对论性喷流的不同方向。我们发现cso和耀变体都表现出光通量的变化,尽管cso的变异性比耀变体低。观测到的cso和blazar的变化归因于相对论性喷流,而blazar相对于cso的光学变化增加可能是由于光束效应。cso和blazars表现出相似的颜色变化,两者都表现出越亮越蓝的趋势。这种颜色变化模式是由于与它们的相对论性喷流相关的过程所导致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信