Cu(i)-based metal–organic framework-derived core–shell composites for carbon dioxide conversion to oxazolidinones†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xiaoci Zhang , Ce Liu , Yanxin Liu , Rongrong Fan , Feng Shi , Xinjiang Cui
{"title":"Cu(i)-based metal–organic framework-derived core–shell composites for carbon dioxide conversion to oxazolidinones†","authors":"Xiaoci Zhang ,&nbsp;Ce Liu ,&nbsp;Yanxin Liu ,&nbsp;Rongrong Fan ,&nbsp;Feng Shi ,&nbsp;Xinjiang Cui","doi":"10.1039/d5cy00166h","DOIUrl":null,"url":null,"abstract":"<div><div>Cu(<span>i</span>)-based catalysts have shown great potential for CO<sub>2</sub> conversion, though Cu(<span>i</span>) instability remains a significant hurdle. One promising approach is the encapsulation of Cu(<span>i</span>)-based nanoparticles within MOFs. This strategy not only protects the nanoparticles but also facilitates the preconcentration of substrates (<em>e.g.</em>, CO<sub>2</sub>) and intermediates through steric confinement effects, thereby enhancing the catalytic rate and selectivity. In this study, a surfactant-assisted self-assembly strategy was employed to fabricate a Cu<sub>2</sub>O@ZIF-8 composite with a high specific surface area (894.84 m<sup>3</sup> g<sup>−1</sup>). The ZIF-8 shell functions as a microchemical reactor, protecting the internal Cu<sub>2</sub>O NPs while enabling localized CO<sub>2</sub> enrichment and activation, enhancing substrate interactions, and facilitating efficient transport. This composite enabled a one-pot synthesis of oxazolidinones with yields exceeding 99%, along with excellent stability and recyclability. This work offers valuable insights into stabilizing Cu(<span>i</span>) and designing efficient MOF-based catalysts for CO<sub>2</sub> conversion.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 10","pages":"Pages 3092-3101"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325001844","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu(i)-based catalysts have shown great potential for CO2 conversion, though Cu(i) instability remains a significant hurdle. One promising approach is the encapsulation of Cu(i)-based nanoparticles within MOFs. This strategy not only protects the nanoparticles but also facilitates the preconcentration of substrates (e.g., CO2) and intermediates through steric confinement effects, thereby enhancing the catalytic rate and selectivity. In this study, a surfactant-assisted self-assembly strategy was employed to fabricate a Cu2O@ZIF-8 composite with a high specific surface area (894.84 m3 g−1). The ZIF-8 shell functions as a microchemical reactor, protecting the internal Cu2O NPs while enabling localized CO2 enrichment and activation, enhancing substrate interactions, and facilitating efficient transport. This composite enabled a one-pot synthesis of oxazolidinones with yields exceeding 99%, along with excellent stability and recyclability. This work offers valuable insights into stabilizing Cu(i) and designing efficient MOF-based catalysts for CO2 conversion.
Cu(i)基金属-有机骨架衍生核壳复合材料用于二氧化碳转化为恶唑烷酮†
Cu(I)基催化剂显示出巨大的潜力,尽管Cu(I)的不稳定性仍然是一个重大障碍。一种很有前途的方法是在mof内封装Cu(I)基纳米颗粒。该策略不仅可以保护纳米颗粒,还可以通过空间限制效应促进底物(如CO2)和中间体的预富集,从而提高催化速率和选择性。在本研究中,采用表面活性剂辅助自组装策略制备了具有高比表面积(894.84 m3 g−1)的Cu2O@ZIF-8复合材料。ZIF-8外壳作为微化学反应器,保护内部的Cu2O NPs,同时实现局部CO2富集和活化,增强底物相互作用,促进高效运输。该复合材料可一锅合成恶唑烷酮,收率超过99%,具有良好的稳定性和可回收性。这项工作为稳定Cu(I)和设计高效的基于mof的CO2转化催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信