Control of crystal size distribution in continuous cooling crystallization using non-isothermal Taylor vortex†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-04-21 DOI:10.1039/D5CE00171D
Zun-Hua Li, Zhao-Hui Wu, Gerard Coquerel, Bum Jun Park and Woo-Sik Kim
{"title":"Control of crystal size distribution in continuous cooling crystallization using non-isothermal Taylor vortex†","authors":"Zun-Hua Li, Zhao-Hui Wu, Gerard Coquerel, Bum Jun Park and Woo-Sik Kim","doi":"10.1039/D5CE00171D","DOIUrl":null,"url":null,"abstract":"<p >The establishment of a non-isothermal Taylor vortex flow within a Couette–Taylor (CT) crystallizer, achieved by applying varying temperatures to the inner and outer cylinders, facilitates precise regulation of the crystal size distribution (CSD) during continuous cooling crystallization. This methodology transforms initially generated crystals into a suspension characterized by a narrow CSD through the implementation of internal heating and cooling cycles. The efficacy of this process, particularly concerning <small>L</small>-lysine crystals, is influenced by the temperature gradient, the flow direction between the cylinders, and specific non-isothermal parameters. Under optimal conditions, which include a temperature difference of 18.1 ± 0.2 °C, a rotational speed of 200 rpm, and an average residence time of 2.5 minutes, the non-isothermal Taylor vortex has been shown to effectively reduce the CSD by promoting dissolution-recrystallization cycles.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 20","pages":" 3362-3377"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00171d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00171d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of a non-isothermal Taylor vortex flow within a Couette–Taylor (CT) crystallizer, achieved by applying varying temperatures to the inner and outer cylinders, facilitates precise regulation of the crystal size distribution (CSD) during continuous cooling crystallization. This methodology transforms initially generated crystals into a suspension characterized by a narrow CSD through the implementation of internal heating and cooling cycles. The efficacy of this process, particularly concerning L-lysine crystals, is influenced by the temperature gradient, the flow direction between the cylinders, and specific non-isothermal parameters. Under optimal conditions, which include a temperature difference of 18.1 ± 0.2 °C, a rotational speed of 200 rpm, and an average residence time of 2.5 minutes, the non-isothermal Taylor vortex has been shown to effectively reduce the CSD by promoting dissolution-recrystallization cycles.

用非等温泰勒涡控制连续冷却结晶中晶体尺寸分布
在Couette-Taylor (CT)结晶器内建立非等温Taylor涡旋流,通过对内外圆柱体施加不同的温度来实现,有助于在连续冷却结晶过程中精确调节晶体尺寸分布(CSD)。该方法通过实施内部加热和冷却循环,将最初生成的晶体转化为具有窄CSD特征的悬浮液。这一过程的效果,特别是关于l -赖氨酸晶体,受温度梯度、圆柱体之间的流动方向和特定的非等温参数的影响。在温差为18.1±0.2°C、转速为200 rpm、平均停留时间为2.5分钟的最佳条件下,非等温Taylor涡旋通过促进溶解-再结晶循环有效地降低了CSD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信