Normalized solutions to Schrödinger systems with critical nonlinearities

IF 1.3 2区 数学 Q1 MATHEMATICS
Yuxi Meng , Xiaoming He , Patrick Winkert
{"title":"Normalized solutions to Schrödinger systems with critical nonlinearities","authors":"Yuxi Meng ,&nbsp;Xiaoming He ,&nbsp;Patrick Winkert","doi":"10.1016/j.na.2025.113845","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a system of coupled Schrödinger equations involving critical exponent given by <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>α</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfrac><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>β</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfrac><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>We study the existence of positive ground state solutions having prescribed mass <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span>, the Sobolev critical exponent, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> are parameters to be specified and will appear as Lagrange multipliers, and <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a parameter. Under some <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-subcritical, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-supercritical perturbations <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi></mrow></math></span>, respectively, we prove several existence results by using variational methods, which can be considered as a counterpart of the Brézis-Nirenberg problem in the context of normalized solutions for coupled Schrödinger equations. Our results extend and improve the existing literature in several directions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113845"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000999","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of coupled Schrödinger equations involving critical exponent given by Δu+λ1u=μ|u|q2u+2αα+β|u|α2u|v|βinRN,Δv+λ2v=μ|v|q2v+2βα+β|u|α|v|β2vinRN.We study the existence of positive ground state solutions having prescribed mass RN|u|2dx=a12andRN|v|2dx=a22,where N=3,4, a1,a2>0, q(2,2), α,β>1 with α+β=2=2NN2, the Sobolev critical exponent, λ1,λ2R are parameters to be specified and will appear as Lagrange multipliers, and μ>0 is a parameter. Under some L2-subcritical, L2-critical and L2-supercritical perturbations μ|u|q2u and μ|v|q2v, respectively, we prove several existence results by using variational methods, which can be considered as a counterpart of the Brézis-Nirenberg problem in the context of normalized solutions for coupled Schrödinger equations. Our results extend and improve the existing literature in several directions.
临界非线性Schrödinger系统的归一化解
我们考虑了一个包含临界指数的耦合Schrödinger方程系统:−Δu+λ1u=μ|u|q−2u+2αα+β|u|α−2u|v|β inrn,−Δv+λ2v=μ|v|q−2v+2βα+β|u|α|v|β−2vinRN。我们研究了具有规定质量∫RN|u|2dx=a12和∫RN|v|2dx=a22的正基态解的存在性,其中N=3,4, a1,a2>0, q∈(2,2∗),α,β>1,其中α+β=2∗=2NN−2,Sobolev临界指数λ1,λ2∈R是要指定的参数,将以拉格朗日乘子形式出现,μ>;0是一个参数。在一些l2 -亚临界、l2 -临界和l2 -超临界微动μ|u|q−2u和μ|v|q−2v下,我们用变分方法证明了几个存在性结果,这些结果可以看作是耦合Schrödinger方程归一化解下brsamzis - nirenberg问题的对应。我们的研究结果在几个方面扩展和改进了现有的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信