{"title":"Normalized solutions to Schrödinger systems with critical nonlinearities","authors":"Yuxi Meng , Xiaoming He , Patrick Winkert","doi":"10.1016/j.na.2025.113845","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a system of coupled Schrödinger equations involving critical exponent given by <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>α</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfrac><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>β</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfrac><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>We study the existence of positive ground state solutions having prescribed mass <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mtext>and</mtext><mspace></mspace><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>1</mn></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span>, the Sobolev critical exponent, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> are parameters to be specified and will appear as Lagrange multipliers, and <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span> is a parameter. Under some <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-subcritical, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-supercritical perturbations <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi></mrow></math></span>, respectively, we prove several existence results by using variational methods, which can be considered as a counterpart of the Brézis-Nirenberg problem in the context of normalized solutions for coupled Schrödinger equations. Our results extend and improve the existing literature in several directions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113845"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000999","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a system of coupled Schrödinger equations involving critical exponent given by We study the existence of positive ground state solutions having prescribed mass where , , , with , the Sobolev critical exponent, are parameters to be specified and will appear as Lagrange multipliers, and is a parameter. Under some -subcritical, -critical and -supercritical perturbations and , respectively, we prove several existence results by using variational methods, which can be considered as a counterpart of the Brézis-Nirenberg problem in the context of normalized solutions for coupled Schrödinger equations. Our results extend and improve the existing literature in several directions.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.