Triviality of k-Yamabe gradient solitons immersed in certain warped product spaces

IF 1.3 2区 数学 Q1 MATHEMATICS
Henrique F. de Lima, Ary V.F. Leite, Marco A.L. Velásquez
{"title":"Triviality of k-Yamabe gradient solitons immersed in certain warped product spaces","authors":"Henrique F. de Lima,&nbsp;Ary V.F. Leite,&nbsp;Marco A.L. Velásquez","doi":"10.1016/j.na.2025.113848","DOIUrl":null,"url":null,"abstract":"<div><div>We deal with complete noncompact and stochastically complete <span><math><mi>k</mi></math></span>-Yamabe gradient solitons immersed in a warped product space obeying a suitable curvature constraint. In this context, we establish a necessary and sufficient condition for a Riemannian manifold immersed in a warped product to be a <span><math><mi>k</mi></math></span>-Yamabe gradient soliton, under the hypothesis that the potential function agrees with the height function. Proceeding with this setting, we use a suitable Bochner type formula jointly with integrability conditions and some maximum principles dealing, in particular, with the notions of convergence to zero at infinity and polynomial volume growth, to obtain new triviality results concerning <span><math><mi>k</mi></math></span>-Yamabe gradient solitons. Moreover, we present some applications of our main results to a class of pseudo-hyperbolic spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113848"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with complete noncompact and stochastically complete k-Yamabe gradient solitons immersed in a warped product space obeying a suitable curvature constraint. In this context, we establish a necessary and sufficient condition for a Riemannian manifold immersed in a warped product to be a k-Yamabe gradient soliton, under the hypothesis that the potential function agrees with the height function. Proceeding with this setting, we use a suitable Bochner type formula jointly with integrability conditions and some maximum principles dealing, in particular, with the notions of convergence to zero at infinity and polynomial volume growth, to obtain new triviality results concerning k-Yamabe gradient solitons. Moreover, we present some applications of our main results to a class of pseudo-hyperbolic spaces.
k-Yamabe梯度孤子在翘曲积空间中的平凡性
研究了完全非紧和随机完全k-Yamabe梯度孤子,这些孤子浸没在符合适当曲率约束的弯曲积空间中。在势函数与高度函数一致的假设下,建立了浸没在弯曲积中的黎曼流形是k-Yamabe梯度孤子的充分必要条件。在此基础上,我们利用合适的Bochner型公式,结合可积性条件和一些处理无穷远处收敛到零和多项式体积增长的极大原理,得到了关于k-Yamabe梯度孤子的新的平凡性结果。此外,我们给出了我们的主要结果在一类伪双曲空间中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信