{"title":"Optimization-based model order reduction of fluid-structure interaction problems","authors":"Tommaso Taddei , Xuejun Xu , Lei Zhang","doi":"10.1016/j.jcp.2025.114084","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce optimization-based full-order and reduced-order formulations of fluid-structure interaction problems. We study the flow of an incompressible Newtonian fluid which interacts with an elastic body: we consider an arbitrary Lagrangian Eulerian formulation of the fluid problem and a fully Lagrangian formulation of the solid problem; we rely on a finite element discretization of both fluid and solid equations. The distinctive feature of our approach is an implicit coupling of fluid and structural problems that relies on the solution to a constrained optimization problem with equality constraints. We discuss the application of projection-based model reduction to both fluid and solid subproblems: we rely on Galerkin projection for the solid equations and on least-squares Petrov-Galerkin projection for the fluid equations. Numerical results for three model problems illustrate the many features of the formulation.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"536 ","pages":"Article 114084"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003675","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce optimization-based full-order and reduced-order formulations of fluid-structure interaction problems. We study the flow of an incompressible Newtonian fluid which interacts with an elastic body: we consider an arbitrary Lagrangian Eulerian formulation of the fluid problem and a fully Lagrangian formulation of the solid problem; we rely on a finite element discretization of both fluid and solid equations. The distinctive feature of our approach is an implicit coupling of fluid and structural problems that relies on the solution to a constrained optimization problem with equality constraints. We discuss the application of projection-based model reduction to both fluid and solid subproblems: we rely on Galerkin projection for the solid equations and on least-squares Petrov-Galerkin projection for the fluid equations. Numerical results for three model problems illustrate the many features of the formulation.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.