An anisotropic nonlinear stabilization for finite element approximation of Vlasov–Poisson equations

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Junjie Wen, Murtazo Nazarov
{"title":"An anisotropic nonlinear stabilization for finite element approximation of Vlasov–Poisson equations","authors":"Junjie Wen,&nbsp;Murtazo Nazarov","doi":"10.1016/j.jcp.2025.114079","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a high-order finite element method for approximating the Vlasov–Poisson equations. This approach employs continuous Lagrange polynomials in space and explicit Runge–Kutta schemes for time discretization. To stabilize the numerical oscillations inherent in the scheme, a new anisotropic nonlinear artificial viscosity method is introduced. Numerical results demonstrate that this method achieves optimal convergence order with respect to both the polynomial space and time integration. The method is validated using classic benchmark problems for the Vlasov–Poisson equations, including Landau damping, two-stream instability, and bump-on-tail instability in a two-dimensional phase space.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"536 ","pages":"Article 114079"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003626","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a high-order finite element method for approximating the Vlasov–Poisson equations. This approach employs continuous Lagrange polynomials in space and explicit Runge–Kutta schemes for time discretization. To stabilize the numerical oscillations inherent in the scheme, a new anisotropic nonlinear artificial viscosity method is introduced. Numerical results demonstrate that this method achieves optimal convergence order with respect to both the polynomial space and time integration. The method is validated using classic benchmark problems for the Vlasov–Poisson equations, including Landau damping, two-stream instability, and bump-on-tail instability in a two-dimensional phase space.
Vlasov-Poisson方程有限元逼近的各向异性非线性稳定
介绍了一种高阶有限元逼近Vlasov-Poisson方程的方法。该方法在空间上采用连续拉格朗日多项式,在时间上采用显式龙格-库塔格式。为了稳定格式中固有的数值振荡,引入了一种新的各向异性非线性人工粘度法。数值结果表明,该方法在多项式的空间积分和时间积分上都达到了最优收敛阶。利用Vlasov-Poisson方程的经典基准问题,包括二维相空间中的朗道阻尼、两流不稳定性和尾碰撞不稳定性,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信