Nitrogen distribution and nitrogen isotope fractionation in synthetic 2:1 phyllosilicates under hydrothermal conditions at 200 °C and saturated vapor pressure
Jaeguk Jo , Toshiro Yamanaka , Youko Miyoshi , Masaya Suzuki , Yoshihiro Kuwahara , Isao Kadota , Hitoshi Chiba , Bum Han Lee
{"title":"Nitrogen distribution and nitrogen isotope fractionation in synthetic 2:1 phyllosilicates under hydrothermal conditions at 200 °C and saturated vapor pressure","authors":"Jaeguk Jo , Toshiro Yamanaka , Youko Miyoshi , Masaya Suzuki , Yoshihiro Kuwahara , Isao Kadota , Hitoshi Chiba , Bum Han Lee","doi":"10.1016/j.apgeochem.2025.106403","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates nitrogen distribution and isotope fractionation within synthetic 2:1 phyllosilicates, simulating submarine hydrothermal environments at 200 °C and saturated vapor pressure. XRD and EDS results revealed the potential coexistence of multiple cations in the interlayer of synthetic 2:1 phyllosilicate, concurrently suggesting cation substitution in the tetrahedral and/or octahedral sheets. Meanwhile, the iron-enriched 25-5 sample exhibited restricted interlayer expansibility. NH<sub>4</sub><sup>+</sup> absorptions were identified in the NH<sub>4</sub>-stretching (3200–2800 cm<sup>−1</sup>) and NH<sub>4</sub>-bending (1450–1400 cm<sup>−1</sup>) regions, with wavenumber shifts indicating the influence of interlayer water removal. At pH 10.56, over 95% of nitrogen was released into the gas phase, while at pH 8.88, nitrogen proportions in the liquid and gas phases were comparable (average 48–49%). Experiments with iron at pH ∼8.80 showed that the nitrogen proportion in the gas phase (average 28%) was more than twofold lower than that in the liquid phase (average 68%). Equilibrium isotope fractionation factors indicated discernible preference for heavier nitrogen isotopes in the solid phase (<em>α</em><sub><em>solid-liquid</em></sub> = 1.009–1.021 and α<sub>solid-gas</sub> = 1.011–1.027). The <em>α</em><sub><em>liquid-gas</em></sub> range for sample 25–2 was 1.001–1.008, while that for the iron-enriched composite 25–5 was 0.997–1.010. Our experimental studies have confirmed that, in the absence of exchange interactions with external substances possessing different nitrogen isotope ratios, nitrogen isotope fractionation between ammonium and ammonia, controlled by variations in temperature and pH during mineralization, plays a crucial role in the variation of nitrogen isotope ratios. Additionally, we confirmed that metal-amines influence nitrogen isotope fractionation by modulating ammonia gas emission. These findings enhance our understanding of nitrogen cycling across the gas, liquid, and solid phases in submarine hydrothermal systems.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"187 ","pages":"Article 106403"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088329272500126X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates nitrogen distribution and isotope fractionation within synthetic 2:1 phyllosilicates, simulating submarine hydrothermal environments at 200 °C and saturated vapor pressure. XRD and EDS results revealed the potential coexistence of multiple cations in the interlayer of synthetic 2:1 phyllosilicate, concurrently suggesting cation substitution in the tetrahedral and/or octahedral sheets. Meanwhile, the iron-enriched 25-5 sample exhibited restricted interlayer expansibility. NH4+ absorptions were identified in the NH4-stretching (3200–2800 cm−1) and NH4-bending (1450–1400 cm−1) regions, with wavenumber shifts indicating the influence of interlayer water removal. At pH 10.56, over 95% of nitrogen was released into the gas phase, while at pH 8.88, nitrogen proportions in the liquid and gas phases were comparable (average 48–49%). Experiments with iron at pH ∼8.80 showed that the nitrogen proportion in the gas phase (average 28%) was more than twofold lower than that in the liquid phase (average 68%). Equilibrium isotope fractionation factors indicated discernible preference for heavier nitrogen isotopes in the solid phase (αsolid-liquid = 1.009–1.021 and αsolid-gas = 1.011–1.027). The αliquid-gas range for sample 25–2 was 1.001–1.008, while that for the iron-enriched composite 25–5 was 0.997–1.010. Our experimental studies have confirmed that, in the absence of exchange interactions with external substances possessing different nitrogen isotope ratios, nitrogen isotope fractionation between ammonium and ammonia, controlled by variations in temperature and pH during mineralization, plays a crucial role in the variation of nitrogen isotope ratios. Additionally, we confirmed that metal-amines influence nitrogen isotope fractionation by modulating ammonia gas emission. These findings enhance our understanding of nitrogen cycling across the gas, liquid, and solid phases in submarine hydrothermal systems.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.