Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm

IF 1.9 Q4 ENERGY & FUELS
Bo Yang , Ruyi Zheng , Yucun Qian , Boxiao Liang , Jingbo Wang
{"title":"Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm","authors":"Bo Yang ,&nbsp;Ruyi Zheng ,&nbsp;Yucun Qian ,&nbsp;Boxiao Liang ,&nbsp;Jingbo Wang","doi":"10.1016/j.gloei.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate identification of unknown internal parameters in photovoltaic (PV) cells is crucial and significantly affects the subsequent system-performance analysis and control. However, noise, insufficient data acquisition, and loss of recorded data can deteriorate the extraction accuracy of unknown parameters. Hence, this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization (AEO) and a Bayesian neural network (BNN) for PV cell parameter extraction. A BNN is used for data preprocessing, including data denoising and prediction. Furthermore, the AEO algorithm is utilized to identify unknown parameters in the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). Nine other metaheuristic algorithms (MhAs) are adopted for an unbiased and comprehensive validation. Simulation results show that BNN-based data preprocessing combined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing. For instance, under denoised data, the accuracies of the SDM, DDM, and TDM increase by 99.69%, 99.70%, and 99.69%, respectively, whereas their accuracy improvements increase by 66.71%, 59.65%, and 70.36%, respectively.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 2","pages":"Pages 316-337"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of unknown internal parameters in photovoltaic (PV) cells is crucial and significantly affects the subsequent system-performance analysis and control. However, noise, insufficient data acquisition, and loss of recorded data can deteriorate the extraction accuracy of unknown parameters. Hence, this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization (AEO) and a Bayesian neural network (BNN) for PV cell parameter extraction. A BNN is used for data preprocessing, including data denoising and prediction. Furthermore, the AEO algorithm is utilized to identify unknown parameters in the single-diode model (SDM), double-diode model (DDM), and three-diode model (TDM). Nine other metaheuristic algorithms (MhAs) are adopted for an unbiased and comprehensive validation. Simulation results show that BNN-based data preprocessing combined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing. For instance, under denoised data, the accuracies of the SDM, DDM, and TDM increase by 99.69%, 99.70%, and 99.69%, respectively, whereas their accuracy improvements increase by 66.71%, 59.65%, and 70.36%, respectively.
基于贝叶斯神经网络的光伏电池参数高效识别人工生态系统优化算法
准确识别光伏电池内部未知参数至关重要,对后续系统性能分析和控制具有重要意义。然而,噪声、数据采集不足和记录数据丢失会降低未知参数提取的准确性。因此,本研究提出了一种集成人工生态系统优化(AEO)和贝叶斯神经网络(BNN)的智能参数识别策略,用于光伏电池参数提取。采用神经网络进行数据预处理,包括数据去噪和预测。此外,利用AEO算法对单二极管模型(SDM)、双二极管模型(DDM)和三二极管模型(TDM)中的未知参数进行了识别。采用其他九种元启发式算法(MhAs)进行无偏和全面的验证。仿真结果表明,与未进行数据预处理的方法相比,基于神经网络的数据预处理与有效的MhAs相结合显著提高了参数提取的精度和稳定性。例如,在去噪条件下,SDM、DDM和TDM的精度分别提高了99.69%、99.70%和99.69%,精度提高幅度分别为66.71%、59.65%和70.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信