{"title":"Phenolic resin/cadmium selenide heterojunctions for efficient hydrogen peroxide production with broad-spectrum light utilization","authors":"Zhixiong Zheng , Yazhou Zhou","doi":"10.1016/j.apcata.2025.120353","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient and sustainable production of hydrogen peroxide (H₂O₂) via solar-driven photocatalysis is hindered by poor charge separation and limited light absorption. To address these challenges, we present a novel S-scheme heterojunction photocatalyst composed of cadmium selenide (CdSe) nanoparticles and phenolic resin (RF523). The integration of RF523 with CdSe promotes efficient charge separation by generating a built-in electric field, reducing electron-hole recombination. This design enhances both the oxidation and reduction capabilities of the materials and expands spectral absorption to the near-infrared region (800 nm), which is underutilized in conventional systems. The RF/CdSe-100 composite demonstrated a remarkable H₂O₂ production rate of 888.9 μmol·h⁻¹ under full-spectrum light, outperforming mechanically mixed samples by a factor of 2.0. Additionally, the composite exhibited broad-spectrum light absorption, with an apparent quantum yield of 19.0 % under 365 nm light and 1.7 % under 800 nm light, highlighting its ability to efficiently utilize a wide range of solar energy. The photocatalytic mechanism is driven by the S-scheme charge transfer process, enhancing redox efficiency and promoting the generation of reactive oxygen species (ROS) for H₂O₂ production. This work offers an efficient strategy for solar-driven H₂O₂ synthesis, advancing the design of photocatalysts for renewable energy and environmental applications.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"703 ","pages":"Article 120353"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25002546","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient and sustainable production of hydrogen peroxide (H₂O₂) via solar-driven photocatalysis is hindered by poor charge separation and limited light absorption. To address these challenges, we present a novel S-scheme heterojunction photocatalyst composed of cadmium selenide (CdSe) nanoparticles and phenolic resin (RF523). The integration of RF523 with CdSe promotes efficient charge separation by generating a built-in electric field, reducing electron-hole recombination. This design enhances both the oxidation and reduction capabilities of the materials and expands spectral absorption to the near-infrared region (800 nm), which is underutilized in conventional systems. The RF/CdSe-100 composite demonstrated a remarkable H₂O₂ production rate of 888.9 μmol·h⁻¹ under full-spectrum light, outperforming mechanically mixed samples by a factor of 2.0. Additionally, the composite exhibited broad-spectrum light absorption, with an apparent quantum yield of 19.0 % under 365 nm light and 1.7 % under 800 nm light, highlighting its ability to efficiently utilize a wide range of solar energy. The photocatalytic mechanism is driven by the S-scheme charge transfer process, enhancing redox efficiency and promoting the generation of reactive oxygen species (ROS) for H₂O₂ production. This work offers an efficient strategy for solar-driven H₂O₂ synthesis, advancing the design of photocatalysts for renewable energy and environmental applications.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.