Pengcheng Shi,Bo Tang,Wen Xie,Ke Li,Di Guo,Yining Li,Yufeng Yao,Xiang Cheng,Chengqi Xu,Qing K Wang
{"title":"LncRNA-induced lysosomal localization of NHE1 promotes increased lysosomal pH in macrophages leading to atherosclerosis.","authors":"Pengcheng Shi,Bo Tang,Wen Xie,Ke Li,Di Guo,Yining Li,Yufeng Yao,Xiang Cheng,Chengqi Xu,Qing K Wang","doi":"10.1016/j.jbc.2025.110246","DOIUrl":null,"url":null,"abstract":"ANRIL, also referred to as CDKN2B-AS1, is a lncRNA gene implicated in the pathogenesis of multiple human diseases including atherosclerotic coronary artery disease, however, definitive in vivo evidence is lacking and the underlying molecular mechanism is largely unknown. In this study, we show that ANRIL overexpression causes atherosclerosis in vivo as transgenic mouse overexpression of full-length ANRIL (NR_003529) increases inflammation and aggravates atherosclerosis under ApoE-/- background (ApoE-/-ANRIL mice). Mechanistically, ANRIL reduces the expression of miR-181b-5p, which leads to increased TMEM106B expression. TMEM106B is significantly up-regulated in atherosclerotic lesions of both human CAD patients and ApoE-/-ANRIL mice. TMEM106B interacts and co-localizes with Na+-H+ exchanger NHE1, which results in mis-localization of NHE1 from cell membranes to lysosomal membranes, leading to increased lysosomal pH in macrophages. Large truncation and point mutation analyses define the critical amino acids for TMEM106B-NHE1 interaction and lysosomal pH regulation as F115 and F117 on TMEM106B and I537, C538, and G539 on NHE1. Topological analysis suggests that both N-terminus and C-terminus of NHE1 are located inside lysosomal lumen, and NHE1 is an important new proton efflux channel involved in raising lysosomal pH. A short TMEM106B peptide (YGRKKRRQRRR-L111A112V113F114F115L116F117) disrupting the TMEM106B-NHE1 interaction normalized lysosomal pH in macrophages with ANRIL overexpression. Our data demonstrate that ANRIL promotes atherosclerosis in vivo and identify the ANRIL/miR-181b-5p/TMEM106B-NHE1/lysosomal pH axis as the underlying molecular pathogenic mechanism for the chromosome 9p21.3 genetic locus for coronary artery disease.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"132 1","pages":"110246"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110246","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ANRIL, also referred to as CDKN2B-AS1, is a lncRNA gene implicated in the pathogenesis of multiple human diseases including atherosclerotic coronary artery disease, however, definitive in vivo evidence is lacking and the underlying molecular mechanism is largely unknown. In this study, we show that ANRIL overexpression causes atherosclerosis in vivo as transgenic mouse overexpression of full-length ANRIL (NR_003529) increases inflammation and aggravates atherosclerosis under ApoE-/- background (ApoE-/-ANRIL mice). Mechanistically, ANRIL reduces the expression of miR-181b-5p, which leads to increased TMEM106B expression. TMEM106B is significantly up-regulated in atherosclerotic lesions of both human CAD patients and ApoE-/-ANRIL mice. TMEM106B interacts and co-localizes with Na+-H+ exchanger NHE1, which results in mis-localization of NHE1 from cell membranes to lysosomal membranes, leading to increased lysosomal pH in macrophages. Large truncation and point mutation analyses define the critical amino acids for TMEM106B-NHE1 interaction and lysosomal pH regulation as F115 and F117 on TMEM106B and I537, C538, and G539 on NHE1. Topological analysis suggests that both N-terminus and C-terminus of NHE1 are located inside lysosomal lumen, and NHE1 is an important new proton efflux channel involved in raising lysosomal pH. A short TMEM106B peptide (YGRKKRRQRRR-L111A112V113F114F115L116F117) disrupting the TMEM106B-NHE1 interaction normalized lysosomal pH in macrophages with ANRIL overexpression. Our data demonstrate that ANRIL promotes atherosclerosis in vivo and identify the ANRIL/miR-181b-5p/TMEM106B-NHE1/lysosomal pH axis as the underlying molecular pathogenic mechanism for the chromosome 9p21.3 genetic locus for coronary artery disease.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.