Intelligent System for Automated Spheroid Segmentation Using Machine Learning.

Alessandra Introvaia, Andrea Bezze, Sara Muccio, Clara Mattu, Gabriella Balestra
{"title":"Intelligent System for Automated Spheroid Segmentation Using Machine Learning.","authors":"Alessandra Introvaia, Andrea Bezze, Sara Muccio, Clara Mattu, Gabriella Balestra","doi":"10.3233/SHTI250399","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation is a crucial task of medical image processing, including the analysis of multicellular tumour spheroids (MTSs), a common in vitro model used in cancer research for drug screening. Accurate segmentation of MTSs images allows the extraction of the morphological features necessary for the evaluation of the efficacy of the treatment they undergo. This paper presents an artificial intelligence (AI)-based segmentation system for the analysis of RGB images of MTS using machine learning (ML) classifiers. Unlike previous methods designed for high-performance microscope images, our system focuses on RGB images captured by standard bench-top optical microscopes, offering a cost-effective and accessible solution for research. The preliminary results demonstrate the efficacy of the ML approach in achieving the desired outcome.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"327 ","pages":"557-561"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation is a crucial task of medical image processing, including the analysis of multicellular tumour spheroids (MTSs), a common in vitro model used in cancer research for drug screening. Accurate segmentation of MTSs images allows the extraction of the morphological features necessary for the evaluation of the efficacy of the treatment they undergo. This paper presents an artificial intelligence (AI)-based segmentation system for the analysis of RGB images of MTS using machine learning (ML) classifiers. Unlike previous methods designed for high-performance microscope images, our system focuses on RGB images captured by standard bench-top optical microscopes, offering a cost-effective and accessible solution for research. The preliminary results demonstrate the efficacy of the ML approach in achieving the desired outcome.

基于机器学习的球体自动分割智能系统。
图像分割是医学图像处理的一项关键任务,包括多细胞肿瘤球体(mts)的分析,多细胞肿瘤球体是癌症研究中用于药物筛选的常见体外模型。mts图像的准确分割允许提取必要的形态学特征,以评估它们所经历的治疗效果。本文提出了一种基于人工智能(AI)的MTS RGB图像分割系统,该系统采用机器学习分类器对MTS RGB图像进行分析。不同于以前设计的高性能显微镜图像方法,我们的系统专注于标准台式光学显微镜捕获的RGB图像,为研究提供了经济高效且易于使用的解决方案。初步结果证明了机器学习方法在实现预期结果方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信