Madita Vahrenbrink, C D Coleman, S Kuipers, I Lurje, L Hammerich, D Kunkel, J Keye, S Dittrich, B M Schjeide, R Hiß, J Müller, G P Püschel, J Henkel
{"title":"Dynamic changes in macrophage populations and resulting alterations in Prostaglandin E<sub>2</sub> sensitivity in mice with diet-induced MASH.","authors":"Madita Vahrenbrink, C D Coleman, S Kuipers, I Lurje, L Hammerich, D Kunkel, J Keye, S Dittrich, B M Schjeide, R Hiß, J Müller, G P Püschel, J Henkel","doi":"10.1186/s12964-025-02222-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The transition from metabolic dysfunction-associated steatotic liver disease (MASLD) to steatohepatitis (MASH) is characterized by a chronic low-grade inflammation, involving activation of resident macrophages (Kupffer cells; KC) and recruitment of infiltrating macrophages. Macrophages produce cytokines and, after induction of Cyclooxygenase 2 (COX-2), the key enzyme of prostanoid synthesis, prostaglandin E<sub>2</sub> (PGE<sub>2</sub>). PGE<sub>2</sub> modulates cytokine production in an autocrine and paracrine manner, therefore playing a pivotal role in regulating inflammatory processes. Changes in the hepatic macrophage pool during MASLD progression to MASH could influence PGE<sub>2</sub>- and cytokine-mediated signaling processes. The aim of this study was to characterize these changes in mice with diet-induced MASH and further elucidate the role of COX-2-dependently formed PGE<sub>2</sub> on the inflammatory response in different macrophage populations of mice with a macrophage-specific COX-2-deletion.</p><p><strong>Methods: </strong>Male, 6-7-week-old wildtype mice were fed either a Standard or high-fat, high-cholesterol MASH-inducing diet for 4, 12 and 20 weeks. Liver macrophages were isolated and analyzed by flow cytometry. For in vitro experiments primary KC, peritoneal macrophages (PM) and Bone-marrow-derived macrophages (BMDM) were isolated from macrophage-specific COX-2-deficient and wildtype mice and treated with lipopolysaccharide (LPS) and/or PGE<sub>2</sub>.</p><p><strong>Results: </strong>During MASH-development, the proportion of KC (Clec4F<sup>+</sup>Tim4<sup>+</sup>) decreased, while the proportion of monocyte-derived macrophages (Clec4F<sup>-</sup>Tim4<sup>-</sup>) and monocyte-derived cells exhibiting a phenotype similar to KC (Clec4F<sup>+</sup>Tim4<sup>-</sup>) significantly increased over time. In vitro experiments showed that exogenous PGE<sub>2</sub> completely abrogated the LPS-induced mRNA expression and secretion of tumor necrosis factor-alpha (TNF-α) in primary KC, PM and BMDM from wildtype mice. PM and BMDM, as in vitro models for infiltrating macrophages, were more sensitive to PGE<sub>2</sub> compared to KC. Deletion of COX-2 in all macrophage populations led to an impaired PGE<sub>2</sub>-dependent feedback inhibition of TNF-α production. LPSinduced TNF-α mRNA expression was higher compared to the respective wildtype macrophage population.</p><p><strong>Conclusion: </strong>The current study, using a murine MASH model, indicates that PGE<sub>2</sub> may have a protective, anti-inflammatory effect, especially by inhibiting the expression of pro-inflammatory cytokines such as TNFα in infiltrating monocyte-derived macrophages. An inhibition of endogenous PGE<sub>2</sub> synthesis in macrophages by pharmacological inhibition of COX-2 could potentially increase inflammation and promote the progression of MASH.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"227"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02222-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The transition from metabolic dysfunction-associated steatotic liver disease (MASLD) to steatohepatitis (MASH) is characterized by a chronic low-grade inflammation, involving activation of resident macrophages (Kupffer cells; KC) and recruitment of infiltrating macrophages. Macrophages produce cytokines and, after induction of Cyclooxygenase 2 (COX-2), the key enzyme of prostanoid synthesis, prostaglandin E2 (PGE2). PGE2 modulates cytokine production in an autocrine and paracrine manner, therefore playing a pivotal role in regulating inflammatory processes. Changes in the hepatic macrophage pool during MASLD progression to MASH could influence PGE2- and cytokine-mediated signaling processes. The aim of this study was to characterize these changes in mice with diet-induced MASH and further elucidate the role of COX-2-dependently formed PGE2 on the inflammatory response in different macrophage populations of mice with a macrophage-specific COX-2-deletion.
Methods: Male, 6-7-week-old wildtype mice were fed either a Standard or high-fat, high-cholesterol MASH-inducing diet for 4, 12 and 20 weeks. Liver macrophages were isolated and analyzed by flow cytometry. For in vitro experiments primary KC, peritoneal macrophages (PM) and Bone-marrow-derived macrophages (BMDM) were isolated from macrophage-specific COX-2-deficient and wildtype mice and treated with lipopolysaccharide (LPS) and/or PGE2.
Results: During MASH-development, the proportion of KC (Clec4F+Tim4+) decreased, while the proportion of monocyte-derived macrophages (Clec4F-Tim4-) and monocyte-derived cells exhibiting a phenotype similar to KC (Clec4F+Tim4-) significantly increased over time. In vitro experiments showed that exogenous PGE2 completely abrogated the LPS-induced mRNA expression and secretion of tumor necrosis factor-alpha (TNF-α) in primary KC, PM and BMDM from wildtype mice. PM and BMDM, as in vitro models for infiltrating macrophages, were more sensitive to PGE2 compared to KC. Deletion of COX-2 in all macrophage populations led to an impaired PGE2-dependent feedback inhibition of TNF-α production. LPSinduced TNF-α mRNA expression was higher compared to the respective wildtype macrophage population.
Conclusion: The current study, using a murine MASH model, indicates that PGE2 may have a protective, anti-inflammatory effect, especially by inhibiting the expression of pro-inflammatory cytokines such as TNFα in infiltrating monocyte-derived macrophages. An inhibition of endogenous PGE2 synthesis in macrophages by pharmacological inhibition of COX-2 could potentially increase inflammation and promote the progression of MASH.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.