FLANDERS: Fast Learning COVID-19 Care System.

Alberto García-Blanco, A Giuliano Mirabella, Esther Román-Villarán, Carlos Luis Parra-Calderón
{"title":"FLANDERS: Fast Learning COVID-19 Care System.","authors":"Alberto García-Blanco, A Giuliano Mirabella, Esther Román-Villarán, Carlos Luis Parra-Calderón","doi":"10.3233/SHTI250411","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic highlighted the complexities of diagnosing and managing acute Respiratory Failure (RF). Early prediction of RF remains a key challenge, with no established tools currently available. This study developed a machine learning model to predict RF in hospitalised COVID-19 patients, using structured data (demographic and clinical variables) and clinical reports processed through Natural Language Processing. Early results show an AUC-ROC of 0.856 and an accuracy of 76.5∖% with a Random Forest model, demonstrating the potential of AI to enhance early prediction of patient outcomes in the context of RF.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"327 ","pages":"599-600"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic highlighted the complexities of diagnosing and managing acute Respiratory Failure (RF). Early prediction of RF remains a key challenge, with no established tools currently available. This study developed a machine learning model to predict RF in hospitalised COVID-19 patients, using structured data (demographic and clinical variables) and clinical reports processed through Natural Language Processing. Early results show an AUC-ROC of 0.856 and an accuracy of 76.5∖% with a Random Forest model, demonstrating the potential of AI to enhance early prediction of patient outcomes in the context of RF.

法兰德斯:快速学习COVID-19护理系统。
2019冠状病毒病大流行凸显了诊断和管理急性呼吸衰竭的复杂性。射频的早期预测仍然是一个关键的挑战,目前没有成熟的工具可用。本研究开发了一种机器学习模型,使用结构化数据(人口统计学和临床变量)和通过自然语言处理处理的临床报告来预测住院COVID-19患者的射频。早期结果显示,随机森林模型的AUC-ROC为0.856,准确率为76.5±%,证明了人工智能在射频背景下增强患者预后早期预测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信